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Abstract— Object goal navigation (ObjectNav) is the task of
finding a target object in an unseen environment. It is one of
the fundamental challenges in visual navigation as it requires
both structural and semantic understanding. In this paper, we
present OVG-Nav, a novel ObjectNav framework that leverages
a topological graph structure called object value graph (OVG),
which contains visual observations and commonsense prior
knowledge. The high-level planning of OVG-Nav prioritizes
subgoal nodes for exploration based on a metric called object
value, which reflects the closeness to the target object. Here,
we propose OVGNet, a model designed to predict the object
values of each node of an OVG using observed features
along with commonsense knowledge. The structure of high-
level planning using OVG and low-level action decisions reduces
sensitivity to accumulating sensor noises, leading to robust
navigation performance. Experimental results show that OVG-
Nav outperforms the baseline in success rate (SR) and success
rate weighted by path length (SPL) in the MP3D dataset both
in accurate sensing and noisy sensing. In addition, we show
that the OVG-Nav can be transferred to the real-world robot
successfully.

I. INTRODUCTION

Object goal navigation (ObjectNav) is a fundamental
problem in the field of embodied intelligent robotics. The
ObjectNav task challenges an agent to navigate through an
unknown environment to locate an object instance of a spe-
cific category. While navigation in an unknown environment
is already a challenging task requiring a spatial understanding
of the environment, ObjectNav further complicates this by
requiring semantic understanding, such as relations between
object categories and between goal objects and scene cate-
gories.

Most recent research on ObjectNav has been categorized
into two types of strategies. The first popular approach
is utilizing explicit metric maps, such as top-down-view
occupancy grid maps [1], [2], [3], [4], [5]. Agents using this
strategy construct a metric map during navigation and subse-
quently navigate based on this map. The constructed metric
maps are often called semantic maps when combined with
semantic information, such as detected objects or encoded
visual features [1], [2]. This approach is advantageous as it
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Fig. 1. Overview of OVG-Nav. The agent constructs an object value graph
(OVG) with commonsense knowledge, visual observations, and the goal
object information. The proposed OVGNet predicts the object value of each
candidate node. Then, the agent navigates to the node with the highest object
value, predicted as the closest node to the target object. The figure shows an
example with a goal object, cushion. Here, OVGNet selects the node near
a sofa that fits the commonsense knowledge related to the cushion.

provides explicit and comprehensive spatial representations,
integrating both the environmental structure and pertinent
semantic observations.

Another common approach is using end-to-end neural
network models to derive action decisions directly from agent
observations such as RGB-D observations and agent pose
[6], [7], [8], [9], [10]. These methods typically integrate
deep visual features from encoders such as ResNet [11] and
CLIP visual encoder [12], and other features with encoding
networks like RNNs to output the following step action.
These end-to-end action policy networks are usually trained
using reinforcement learning (RL) [6], [7], [8], [10] or
using observation-action paired data [9]. With the power of
deep neural networks, these methods can implicitly encode
high-level environmental features for navigation, including
semantic information.

While both methodologies offer distinct advantages in
ObjectNav, they also come with inherent limitations under
certain scenarios. For instance, despite its explicit and rich
spatial context, the semantic map requires precise agent poses
for the metric map construction. Relying on these maps for
global navigation and action planning becomes problematic
if any pose errors corrupt the map. This becomes especially
concerning when agents lack access to precise GPS and
compass sensors, such as indoor navigation, leading to noise
accumulation through repeated pose estimation. For end-to-
end methodologies, implicit feature embedding is disadvan-
tageous in understanding global structural information due



to the integrated embedding features with local observation.
This limits their efficiency, especially if the target object is
significantly distant from the agent’s starting point.

To address these issues, we introduce the object value
graph navigation for ObjectNav (OVG-Nav). This framework
avoids the limitations of relying heavily on precise metric
data or fully implicit feature embedding. Instead, OVG-Nav
employs a topological graph structure, the object value graph
(OVG), which serves as an episodic memory representation.
The OVG captures spatial relationships in the environment,
enriched by semantic visual features and commonsense prior
knowledge related to the target object, for instance, which
kind of space is probable to find the goal object. For
leveraging the combined structural and semantic attributes
of the OVG, we propose OVGNet that predicts object values
for each node of an OVG. These object values reflect the
closeness to their nearest target object, serving as a metric
to estimate which node is physically close to the goal object.
Consequently, a node with the highest object value is desig-
nated as a subgoal node in high-level navigation, obtaining
priority in exploration for efficient object searching. Fig. 1
shows an overview of OVG-Nav.

One notable advantage of OVG-Nav’s topological graph-
centric approach is its diminished dependence on precise ge-
ometrical sensing, making it more robust to pose estimation
inaccuracies. The topological representation also emphasizes
connections between diverse locations, allowing the agent to
make more effective navigation decisions based on enriched
spatial-aware semantic contexts. Furthermore, by incorpo-
rating commonsense priors from (Comet-) Atomic 2020
[13], OVG-Nav gains insights into locations associated with
the target object. For example, according to commonsense
knowledge, it is more probable to find a target object bed in
a room rather than in a kitchen. Thus, an exploration policy
that prioritizes observed room-like areas over kitchen-like
areas is likely to find a bed more quickly. By leveraging this
type of commonsense prior knowledge, OVG-Nav enhances
exploration efficiency for finding a specific target object.

We have performed rigorous experiments on the Matter-
port3D (MP3D) [14] ObjectNav dataset to evaluate OVG-
Nav, using the AI Habitat simulator [15]. Our evaluations
spanned scenarios from using precise oracle agent pose to
sensory noise on actuation and visual sensing. Impressively,
OVG-Nav consistently outperformed the existing methods,
particularly in noise-intense settings. Beyond simulation,
we have validated the practical applicability of OVG-Nav
through real-world robotic experiments.

In summary, the contributions of the paper are as follows:

o We introduce OVG-Nav, a novel ObjectNav framework
that merges visual observations and commonsense pri-
ors within a topological graph structure, providing a
well-balanced and robust solution.

o Our experiments show that OVG-Nav exceeds the per-
formance of the existing methods in both ideal and noisy
conditions, confirming its robustness and efficiency.

o We successfully transferred the proposed method to a
real-world mobile robot, achieving satisfactory Object-

Nav results that demonstrate the real-world applicability
of our method.

II. RELATED WORK
A. Object Goal Navigation

Various studies have been conducted to address the Ob-
jectNav task. Methods using semantic maps have been
proposed in [16] and [2], where each cell in the map
contains the detected object label and occupancy information.
These semantic maps serve as input features for a high-level
policy network to estimate the next location to explore and
are also used for local navigation toward the current goal
point. While these methods have demonstrated successful
performance in ObjectNav, reliance on semantic maps can be
problematic due to potential distortions caused by inaccurate
pose estimation and accumulated pose errors.

The other approaches that use end-to-end action policies
without building explicit map representations have been
explored, often by proposing auxiliary tasks [6] and data
augmentations [7]. Although these methods show promising
results, their lack of global structural information can lead
to inefficient actions. In this paper, we propose OVG-Nav,
a topological graph representation method that leverages the
spatial structure of the environment while being less affected
by positional errors.

Research has also been conducted on utilizing prior knowl-
edge of relationships between the goal object and observed
objects or rooms [17], [10], [18], [19]. Studies such as [17]
and [18] employ object relation graphs to efficiently locate
the goal object based on the currently observed objects.
[10] collects prior knowledge about hierarchical relationships
between objects and spatial zones and utilizes this infor-
mation for goal object searching. [19] uses commonsense
prior knowledge of the goal object to identify objects with
high co-occurrence scores. These methods demonstrate that
using prior knowledge can enhance ObjectNav performance;
however, they are typically limited to short-range episodes
involving one or two rooms where related objects for hints
can be easily found, e.g., AI2Thor environments [20]. In
contrast, our paper focuses on utilizing prior knowledge for
goal object searching in longer-range episodes that span an
entire house, such as environments in the MP3D dataset.

B. Topological Representation for Visual Navigation

There have been numerous studies on using topological
map representations for visual navigation. Works like [21]
and [22] construct topological maps for localization and
point goal navigation. Visual graph memory (VGM) [23] and
topological semantic graph memory (TSGM) [24] create rich
visual feature-based topological graph memories and employ
them alongside visual goal features to navigate to the goal
point. No RL, no simulation model (NRNS) [25] constructs a
spatial-aware topological graph map with an RGB-D camera
and navigates toward probable unexplored nodes for image
goal navigation. These topological representations use visu-
ally observed features as node information, which is suitable
for image goal navigation where the rich goal image features



are available. However, in the context of ObjectNav, the goal
object category itself often provides less rich information
than a goal image in image goal navigation. To address
this limitation, we propose a topological representation that
incorporates prior knowledge about the object to offer more
useful information for goal object searching.

III. METHOD

We propose commonsense-aware object value graph nav-
igation (OVG-Nav), a novel framework for ObjectNav. This
framework is composed of two main parts: a) the construc-
tion of the object value graph (OVG), and b) the navigation
modules leverage the constructed OVG. OVG is a topolog-
ical map representing the running environment with both
structural and semantic features from visual observations
and commonsense prior knowledge. It is used for high-level
exploration planning by designating subgoals in OVG-Nav.
In this section, we describe the details of each part.

A. Problem Formulation

The goal of the ObjectNav task is to find an object of
a certain goal category o, in an unseen environment. The
problem formulation follows the settings from [26]. At each
time step t, the agent receives a front-view directional RGB-
D image [I¢; D] and an additional 360° RGB image I
which we called a panoramic RGB image. The agent exe-
cutes discrete actions a € A which consist of the following
actions: move_forward, turn_left, turn_right, and stop.
An episode terminates when the stop action is executed, and
the episode is deemed a success if the agent stops within
1m of o,. We assume that the agent lacks a pose sensor for
obtaining its true pose p; in the environment; therefore, the
agent relies on the estimated pose p, relative to the pose at
t=0.

B. Object Value Graph

The object value graph (OVG) is a topological map,
G(N, E), used for mapping and planning in OVG-Nav. It
represents the environment through the physical connections
of the observed navigable points as well as high-level visual
and semantic observations. There are two types of nodes
in OVG: visited nodes N, and candidate nodes N.. The
visited nodes n, € N, represent positions that the agent
has physically visited during the current episode, while the
candidate nodes n. € N, denote positions that are observed
to be navigable but have not yet been visited.

OVG is an episodic memory initialized at the beginning
of an episode and gradually expanded during the navigation.
Graph expansion occurs by adding new candidate nodes that
are connected to a visited node where the agent currently
resides. To determine whether to add a new candidate node
based on the current observation, we build an egocentric
local occupancy map using the front-view depth observation
D¢, Navigable points on the local map that are visible and
situated away from the center by an edge length [ become the
new candidate nodes in OVG. Edges are subsequently added
to connect these candidate nodes to the current node. We set

Local occupancy map

Fig. 2. Graph expansion process of OVG. We first check the navigability of
positions at heading angles of —30°, 0°, and 30° relative to the egocentric
view. The candidate nodes on the navigable locations are added to the OVG
based on a local metric map, and the others are discarded, represented as
ared ‘X’ on the edge in the figure. Then the same visual features of the
aligned direction are filled into the placeholders of the current node and the
corresponding candidate node.

l to 1.0m and check the navigability of positions at heading
angles of —30°, 0°, and 30° relative to the egocentric view.

Each node of OVG consists of visual features, common-
sense features, and information features. The details of the
node features are described in the following.

1) Visual feature: A rich visual feature is an essential
component for obtaining a high-level understanding of the
environment. To extract visual features that encapsulate
information about the semantic relationship with the text-
provided knowledge, such as the target goal name, we
use CLIP [12] visual encoder ¢,;s as a visual encoder
for OVG features. Since visual features are dependent
on orientation even when located at the same position,
a visual feature of a node, ¢(n;), uses placeholders for
visual features that correspond to discretized orientations,
ensuring a full representation of panoramic observations
at the node position. We split a panoramic RGB obser-
vation I{ into If,,...,I{1,, and populate the placeholders
for discretized panoramic visual features accordingly as
d(nie) = concat(puis(Ify), -, duis(I{15)). Note that we
align the relative global orientation of observations with
the corresponding placeholders to maintain the sequence of
orientations in the visual features.

While the agent can obtain a panoramic observation from
a visited node, it lacks access to such an observation from
an unvisited candidate node. The only visual observation
available for a candidate node originates from the orientation
pointing from the agent’s current location to that candidate
node. We assume that the visual observations from two
neighboring nodes are similar when the observation orienta-
tions align with the relative direction between the two nodes.
Therefore, we use the visual observation of the direction
of the candidate node as that node’s visual features. Fig.
2 shows the method for updating the visual features of a
candidate node. The visual features of a candidate node are
stored in the placeholder that corresponds to its global orien-
tation, and placeholders for other orientations are initialized
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Fig. 3. Commonsense prior model to get commonsense feature. The output
of C' is a list of text forms of locations where the input o4 is likely to be
found based on the commonsense. ¥(ny, 04) represents the commonsense
scores between the list of locations and each of the divided panoramic visual
observations.

to zero. The visual features of a candidate node are updated
during navigation when the agent visits connected nodes.
Note that these updates consider the observed direction from
the agent’s position.

2) Commonsense feature: Commonsense knowledge of
objects and environments facilitates more efficient explo-
ration in ObjectNav, particularly in unseen environments.
For example, if the environment configuration is unknown,
it is more reasonable in commonsense to prioritize the ex-
ploration of areas resembling rooms over those resembling
kitchens for locating a target object such as a bed. To
leverage this type of prior knowledge, we use the (Comet-
) Atomic 2020 [13], a pretrained commonsense knowledge
model C, to identify highly probable locations for the target
objects. Among the various commonsense relations provided
by [13], we focus on the “A AtLocation B” relation where
A is the target goal object o4. The function C(o,4) yields
a list of likely locations, B, for o, based on commonsense
reasoning. We define a commonsense score ¢ for a node as
the cosine similarity between the CLIP text-encoded feature
of these likely locations and the CLIP visual features of the
candidate node (Fig. 3).

P(ng,o09) = {(nk,a,04) | d=1,...,12}, (1)

_ ¢text(0(0g)) : d)ViS(I]I;d)
[|rex(C(0g))l2]lvis (I )2

Since CLIP embeddings can represent image-text similarity,
1) serves as a score that quantifies the similarity between the
visual observation and the locations that are expected to find
the target object commonly, as suggested by commonsense
prior knowledge. As shown in Equation 1, the commonsense
feature of a node ng, ¥(ng, og), consists of scores for
panoramic visual observations at the node, ¢ (ng,q4,04) for
d=1,..,12.

3) Information feature: The information feature contains
static data about the node, unaffected by additional observa-
tions. This includes the node’s position, type (i.e., whether
it has been visited), and the goal object feature. Firstly, each
node nj in OVG stores a relative position p; with respect to
the initial position, which captures spatial relations among
nodes. In this work, we consider the scenarios where the

where ¥(ny 4, 04)

agent lacks GPS and compass sensors, meaning the agent
relies on pose estimations rather than the oracle pose. We use
visual odometry based on the RGB-D image observations
to iteratively update the agent’s relative pose. We employ
SuperGlue [27], an end-to-end keypoint matching algorithm
between sequential RGB images for visual odometry. To
estimate the relative pose between two frames, we use the
perspective-n-point (PnP) RANSAC [28] algorithm. This is
achieved by matching keypoints on the target RGB image,
obtained through SuperPoint [29] in the process of Super-
Glue, with the point cloud projections of the keypoints from
the source image based on the depth image. The agent
updates its pose by accumulating the relative pose from the
previous steps during navigation and uses this information
when adding new nodes.

The type of the node is a binary feature which is 1 if
the node is visited and 0 otherwise. Besides the position
and type, a node also contains information about the goal
object of the current episode, represented as ¢seqt(0g). The
information feature of a node, u(ng, og), is a concatenation
of these three observation-invariant features.

In summary, the node feature 6(ny,o4) is defined as
follow,

B(ni, 0,) = concat(d(ny), ¥ (ni, 0,), plne,05)). (@)

C. Navigation module

The navigation policy of OVG-Nav consists of three
steps: global navigation, local goal navigation, and last-mile
navigation.

1) Global navigation: Global navigation is the step of
selecting a subgoal node to explore based on the object
values in N.. The object value of a node, v(ny), is defined
as follows:

v(ng) = max(l — dist(ng, 0g)/distmaz, 0) 3)

Here, dist(nk,0,) represents the shortest geodesic distance
to the goal object from the node position, and dist,, 4 is the
maximum allowable distance. During ObjectNav, the agent
chooses the node with the highest object value as its next
subgoal for navigating toward the goal object. However,
the true v is inaccessible since the agent cannot determine
the oracle location of the nearest goal object in an unseen
environment. To address this, we propose OVGNet, shown in
Fig. 4, which predicts the object value of each node in input
OVG for global navigation. OVGNet is a graph convolutional
network (GCN)-based neural network model that predicts
object values using both node and edge features from an
OVG as inputs. Here, the edge feature is the physical distance
between the connected nodes.

(k) = [O(G(N, E))lx )

OVGNet leverages rich information from the OVG, including
visual features (¢(n)), spatial relationship between nodes
(E), and goal-dependent prior knowledge (¢)(n) and p(n))
to predict the object values. We omit the argument o, of 1
and p for simplification in this section. For visual feature
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Fig. 4.

The overview of OVGNet structure. Visual features from the different sizes of the receptive range are encoded by m GCN layers and the m

number of features is concatenated to predict the final object value of each node. Note that only visual features are encoded over m hops of receptive

ranges by the GCN layers.

encoding, OVGNet employs m GCN layers to encode visual
features of nodes within m hops. Each encoded feature from
the i-th GCN layer, ¢;(n), is concatenated with ¢ (n) and
wu(n), and jointly encoded by a fully connected network
(FCN) to represent the node features in i-hop observations.
Note that ¢)(n) and p(n) from the input 6(n) are fixed for
encoding each i-hop representation to emphasize the goal-
dependent features across different receptive ranges. The
total m number of node features from m GCN layers are
concatenated and utilized to predict object values O(n) via
the output FCN. OVGNet is trained in a supervised manner
using a dataset of OVG and oracle v pairs collected in
simulation environments.

In global navigation, the node niqrger = arg max; 0(neyi)
is selected as the next target node to explore. We employ
Dijkstra’s algorithm to find the shortest path to 744,ge¢ and
designate the closest node on this path as the temporal
subgoal node.

OVGNet implementation details. We use 10 stacked
GCN layers with hidden sizes of 512 each in OVGNet.
That is, for the experiments, OVGNet considers the receptive
range of 10 hops on the OVG to predict object values.

For training OVGNet, we primarily use the I, norm
between the oracle and predicted object values as the loss
function, Loss;,. We also use an additional loss function,
Loss,gq;, defined as follows,

Lossag = 3 |la(v(ns) = v(Adj(ni)),
ik &)
6(ns) — (Adj(n)i)|

where l5(,) is Iy distance and Adj(n;)y is k-th element of
the adjacent nodes of n;. The objective of Lossgg; is to
predict the differences in the object values of adjacent nodes,
which can help in achieving spatially continuous object value
predictions in an OVG. It also helps in correctly ranking the
nodes relative to each other, which is important for selecting
a target node for the global navigation of OVG-Nav.
The overall training loss for OVGNet is defined as,

Loss = aLoss;, + fL0ssqq;- (6)

We use o = 1.0 and 8 = 100.0 for the training process.

2) Local navigation: Local navigation involves planning
actions for navigating between adjacent nodes. According
to the OVG construction method, nodes are connected when
they are navigable within the edge range distance [. Thus, we
construct a compact egocentric local occupancy map similar
to that described in III-B, which covers a range up to [
instead of building a large-scale occupancy map to cover
all observed areas. We employ the fast marching method
(FMM) to determine actions for navigation to the relative
position of the current subgoal node from the center of the
egocentric local map. The local occupancy map is initialized
from scratch each time the agent begins local navigation and
is updated until the agent reaches the current subgoal.

Navigation in OVG-Nav consists of iterative cycles of
global navigation and local navigation: 1) OVGNet predicts
the next subgoal when the agent reaches the current one, and
2) actions are determined for navigation to this next subgoal
node, which is adjacent to the current node.

3) Last-mile navigation: Last-mile navigation activates
when the goal object is observed. We employ a finetuned
version of RedNet [6] for detecting goal object masks in
the front-view RGB-D observation [I; D{]. Once the target
object is detected, a point cloud corresponding to the median
depth in the mask is designated as the goal point. Last-
mile navigation is similar to local navigation in that the
agent constructs an egocentric local occupancy map based
on the its current state. Actions are determined using FMM
to reach the goal point determined from the detection result.
The agent performs a stop action at the end of the last-mile
navigation.

IV. EXPERIMENTS
A. Datasets

In the experiments, we use Matterport3D (MP3D) envi-
ronments [14], which contain photo-realistic indoor scenes
and positions of the 21 categories of goal objects in 56
training environments and 11 validation environments. For
training OVGNet, we collect a dataset of 343,294 OVG data
including the oracle object values based on the trajectories in



TABLE I
OBJECTNAV RESULTS IN MP3D VAL DATASET

Noisy Sensing SR {1 SPLT DTS |

SemExp [1] X 0.253  0.102 -

Red-Rabbit [6] X 0.346  0.079 6.04
THDA [7] X 0.284  0.110 5.60
PONI [2] X 0.309 0.117 5.10
Habitat-Web [9] X 0.354  0.102 -

OVG-Nav (ours) X 0.358 0.123 5.69
SemExp [1] [0) 0.112  0.051 6.63
Red-Rabbit [6] [¢) 0.223  0.058 6.81
PONI [2] [e) 0.226  0.050 6.10
OVG-Nav (ours) [0) 0.278  0.081 6.40

the MP3D ObjectNav dataset for Al Habitat simulator [15].
The OVGs in the dataset are constructed based on the graph
expansion method described in III-B, with the agents follow-
ing the ground truth shortest path in the Habitat ObjectNav
dataset. We evaluate OVG-Nav using the validation episodes
in the Habitat ObjectNav dataset, employing the navigation
policy described in III-C with the trained OVGNet. Note that
the environments used for evaluation are not used for training
OVGNet.

B. Implementation details

Graph expansion. In addition to the default edge addi-
tion in OVG based on Df, we also use panoramic RGB
observation I? for adding edges more densely. We use a
pretrained navigability checking network F', a CNN-based
binary classification model that predicts if it is navigable up
to [ range ahead with an RGB input. When the agent arrives
at a node, we divide I} into 12 directions, I} 1, ..., 15,12’ and
predict navigability of each direction, F(I})), ..., F(I7;5).
We add a new edge if there exists a candidate node in the
direction d, and F(I} ;) = 1, indicating that the direction
d is navigable. The additional edges help in finding a more
efficient path on the graph for navigation to the target subgoal
node. Note that we only use the local occupancy map, which
proves more reliable for checking navigability compared to
predictions by F', for the node addition since false positive
candidate nodes harm the navigation policy on the graph.

Noisy sensing. We implement noisy sensing of the agent
by applying both actuation noises and depth camera noise.
We apply significant actuation noise by adopting the ILQR
noise of LoCoBot with a noise multiplier of 1.0 as suggested
in [15]. Also, we use the RedwoodDepthNoiseModel [30] for
realistic noisy depth sensing.

C. Results

ObjectNav. For evaluating ObjectNav, we use three eval-
uation metrics that are commonly used in visual navigation
tasks: success rate (SR), success rate weighted by path length
(SPL), and distance to success (DTS). Table I shows the
results of OVG-Nav and baseline object goal navigation
methods on the MP3D validation dataset. Under the condi-
tion without noisy sensing, which serves as the conventional
condition for evaluating ObjectNav, OVG-Nav outperforms
the other baselines in SR and SPL.

TABLE I
OVGNET PERFORMANCES RELATED TO THE COMMONSENSE PRIOR

CS Prior NRST ESAT MDT J

OVGNet X 0909 0675 0573

OVGNet 0 0912 0.695 0586
TABLE III

ABLATION STUDY OF VALUE ESTIMATION IN MP3D VAL DATASET

CS Prior  Visual Feature SR 1 SPL1T DTS |
OVG-Nav X X 0.197  0.053 6.54
OVG-Nav o X 0.259  0.074 6.27
OVG-Nav X o 0.345  0.116 5.67
OVG-Nav o o 0.358  0.123 5.69

In DTS, OVG-Nav shows worse performance than baseline
methods like PONI [2] and THDA [7]. Since DTS is a mean
value of distance to success position in m overall episodes,
including failure cases, this result represents that the failure
episodes of OVG-Nav are stopped farther from the goal
position than these baseline methods on average. That is,
OVG-Nav shows superior performance against the baseline
method when it is successful but also has a risk of failing
big when it fails.

We also compare OVG-Nav’s performance under noisy
sensing by replacing the ground truth pose sensor with the
visual odometry module. OVG-Nav also shows the highest
performance and the smallest decline in performance in
SR and SPL with noisy sensing, compared to the code-
available baseline methods. Similar to the noiseless experi-
ments, OVG-Nav shows slightly worse performance in DTS
than PONI, which is a relatively minor difference from the
gap OVG-Nav outperformed in SR and SPL. The overall
results show the robustness of OVG-Nav under noisy sensing
as compared to both metric map-based methods [1], [2] and
the end-to-end method [6].

Effectiveness of commonsense prior. To assess the effec-
tiveness of the commonsense prior, we compare two OVGNet
models that are trained with and without the commonsense
prior feature in the nodes. We use three metrics for evaluating
OVGNet: node ranking score (NRS), edge sign accuracy
(ESA), and min distance to the oracle top-1 node (MDT).
NRS is defined as 1 — (rank(ng) —1)/|N.|, where ny is the
selected next target node and rank(ny) is the oracle object
value ranking of ny. Since ny is the node with the highest
predicted ranking, NRS increases if the oracle ranking of ny
is higher, and if the prediction is not exactly correct, NRS
increases when |N,| is large. ESA is a metric that represents
the accuracy of which node has a higher object value between
adjacent nodes. Comparisons of object values are important
because the global navigation only uses the ranking of
the nodes rather than using object values directly. MDT
represents the distance to the oracle top-1 node, which has
the highest object value, from the selected target node from
the OVG outputs. With these metrics, the evaluation results
of OVGNet in Table II show that using a commonsense prior
(CS prior) helps in the accurate prediction of object values.

We also do ablation studies of OVG-Nav to verify the
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OVG-Nav example of the object goal bed. The green nodes, blue nodes, red nodes, and yellow nodes represent visited nodes, candidate nodes,

the current node, and the next subgoal node, respectively. The estimated goal location in the last-mile navigation is represented as a yellow square. Note
that the top-down map is only for visualization and not provided to the navigation agent.

effectiveness of commonsense prior and visual features for
ObjectNav (Table III). Compared to the random target node
selection model (row 1), using the commonsense prior-only
model (row 2) and using the visual feature-only model
(row 3) both show better performance in ObjectNav. The
proposed OVG-Nav model using both commonsense prior
and visual features shows the highest performance among
the comparisons.

Fig. 5 shows an example episode of OVG-Nav where
the goal object is bed. Here, the oracle agent position is
represented as red points, and the current subgoal node is
represented as yellow. The agent observes its surrounding
environment at first (step 12), then the candidate node on an
aisle is selected for a subgoal by the OVGNet prediction. At
step 53, the agent faces a crossroad and determines the next
subgoal node in a location that seems like a living room,
which is more reasonable than choosing the direction of
another aisle-like location on the other side. Until step 85,
the agent explores a living room yet fails to find the goal
object, so it turns back to explore other places in step 126.
Eventually, the agent finds the goal object bed, and executes
the last-mile navigation to reach it (step 149). The example in
Fig. 5 shows that although the oracle agent trajectory (dark
red points) does not precisely follow the graph due to the
positional errors, OVG-Nav achieves successful navigation
that is less affected by inaccurate poses.

D. Real world experiments

We implement OVG-Nav on a mobile robot, the Clearpath
Jackal platform, to deploy the policy in the real world. The
robot is equipped with a front-view RGB-D camera and
a 360° camera, which matches the simulation setting. We
directly apply the OVGNet trained with the MP3D dataset
to the real-world environment without any finetuning. We
evaluate OVG-Nav in an unseen house environment (House

TABLE IV
SUCCESS RATE OF THE REAL WORLD

Goal Chair  Table Sofa  Cushion Bed Plant Total

House A 5/5 4/5 3/5 4/5 4/5 2/5 22/30

Fig. 6. OVG-Nav demonstration in a real-world environment. The green
nodes, blue nodes, red nodes, and yellow nodes represent visited nodes,
candidate nodes, the current node, and the next subgoal node, respectively.
The agent successfully navigates to the goal object, bed, which is located
in a room.

A), with a total of 30 runs, allocated as five for each of
the six dominant object goals in the environment, which
represent a subset of the 21 goal object categories for the
MP3D environments. Table IV shows the categories of the
object goals and the success rate of each goal, and Fig. 6
shows an example of the episode with the goal category bed.
The average distance to the nearest object goal from each
starting point is 3.7m and 60% of the episodes start at points
where the robot is unable to observe any goal objects at
the initial point, necessitating exploration. The results show
that OVG-Nav is successfully adaptable to the real-world
environment for solving the ObjectNav task, including more
complex scenarios than trivial cases.



V. CONCLUSIONS

In this paper, we introduce the OVG-Nav framework,
a commonsense-aware object value graph navigation for
ObjectNav. OVG-Nav is a navigation framework that uses
global navigation on the graph memory OVG and local
navigation between nodes using a local occupancy map. For
global navigation, we propose OVGNet, which predicts ob-
ject values of each node in OVG by using commonsense prior
and the visual features in the nodes. We show experimental
results that OVG-Nav outperforms the baselines in the MP3D
ObjectNav dataset and also has relatively robust performance
under noisy sensing. In addition, we successfully transferred
OVG-Nav to the real world with the Jackal mobile robot.
Despite the satisfactory results, there also exist limitations
in the proposed method. Since OVG-Nav has robustness in
pose errors by avoiding accumulating them in a global metric
map, it cannot handle excessive pose errors that occur in one
continuous local navigation step. Also, reliance on OVGNet
results can be a problem when the object values are estimated
incorrectly. Nevertheless, there is still some room to improve
the complement of the model in the future, such as by using
chained commonsense prior or using a full metric map in
parallel.
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