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a b s t r a c t 

A compound eye camera is a hemispherical camera made by mimicking the structure of an insect’s eye. 

In general, a compound eye camera is composed of a set of single eye cameras. The compound eye cam- 

era has various advantages due to its unique structure and can be used in various vision tasks. In order 

to apply the compound eye camera to various vision tasks using 3D information, depth estimation is 

required. However, due to the difference between the compound eye image and the 2D RGB image, it 

is hard to use the existing depth estimation methods directly. In this paper, we propose a transformer- 

based neural network for eye-wise depth estimation, which is suitable for the compound eye image. We 

modify the self-attention module with local selective self-attention to take advantage of the compound 

eye’s hemispherical structure. In addition, we reduce the computational amount and increase the per- 

formance through the eye selection module. Using the proposed local selective self-attention and eye 

selection modules, we are able to improve the performance without large-scale pre-training. Compared 

to the ResNet-based depth estimation network, our method showed 2.8% and 1.4% higher performance 

on the GAZEBO and Matterport3D datasets, respectively, with 15.3% fewer network parameters. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

The compound eye camera, modeled after an insect’s eye, is a 

et of small resolution single eye cameras regularly distributed in 

 hemispherical shape. An example of a compound eye camera im- 

ge can be seen in Fig. 1 . The compound eye camera has various

dvantages, such as low aberration and large field of view (FOV) 

ue to the characteristics of this structure [1] . There have been 

tudies to develop the compound eye camera hardware in real 

orld [2] . Most of these compound eye camera hardwares have 

ow-resolution observations and have been applied on tasks such 

s medical endoscopy [3] . 

On the other hand, there have been studies that focus on the 

dvantage of the compound eyes and apply them to various vi- 

ion tasks [4–7] . Among vision tasks, depth information is critical 

n tasks such as 3D reconstruction [8,9] and mobile robot navi- 

ation [10] . In a compound eye camera, a depth sensor must be 

ttached to every single eye to obtain depth information using a 
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epth sensor. However, since depth sensors are relatively expen- 

ive, it is costly to obtain depth information for each eye in a com- 

ound eye camera. Therefore, estimating depth from RGB images 

an be a feasible alternative solution to obtain depth information. 

Depth estimation has been studied in various ways. As deep 

earning technology develops in computer vision, the study of 

pplying deep neural networks to depth estimation has became 

he mainstream. Specifically, convolutional neural network (CNN) 

ased depth estimation techniques have been studied extensively 

7,11,12] . 

These days, the transformer structure has been applied to depth 

stimation, improving the performance [13,14] . The transformer 

15] is a structure that extracts features using a self-attention mod- 

le that finds out how much attention should be paid to each in- 

ut token. By using a patch of an image as an input token [16] , the

ransformer structure has been applied to various computer vision 

asks. 

Among these various depth estimation studies, [7] performed 

epth estimation on a compound eye image, not a 2D RGB image. 

7] proposed an eye-wise depth estimation method that predicts 

ne depth value for each single eye of a compound eye image. 

ye-wise depth estimation is suitable for compound eye cameras 

ainly used in mobile robots because of the advantages of mem- 
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Fig. 1. An illustration of a 2D RGB image and compound eye images taken at the 

same location in a GAZEBO simulator. (a) An example of a 2D RGB image. (b) An 

example of a compound eye image. (c) An example of a compound eye image pro- 

jected in 2D. 
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ry and computation. However, the 2D CNN-based network used in 

7] cannot fully utilize the 3D hemispherical structure of the com- 

ound eye, so there is a room for improvement. 

In this paper, we propose a method for eye-wise depth estima- 

ion using a transformer structure suitable for compound eye im- 

ges. Since a single eye image can be considered as a patch of a vi-

ion transformer, the structure of the compound eye image itself is 

uitable to use the transformer. However, due to the difference of 

he data structures, the conventional vision transformer methods 

esigned for the 2D images cannot be used for the compound eye 

mages directly. In addition, large-scale pre-training is required to 

btain good performance in a transformer-based network. Unfor- 

unately, since there is no ideal compound eye camera hardware 

ith high resolution and curvature, there is no large dataset, so 

arge-scale pre-training is not possible. 

To solve these problems, we propose a local selective self- 

ttention module that applies attention to the closest k single eyes 

y measuring the physical distance between the single eye cam- 

ras. The proposed module is suitable for the compound eye be- 

ause it can utilize locality in a hemispherical structure. In ad- 

ition, to reduce the computational cost and increase the perfor- 

ance, we propose an eye selection module that selectively uses 

 subset of the adjacent eyes in the attention module rather than 

sing all of them. To the best of our knowledge, our method is 

he first to propose depth estimation using a transformer struc- 

ure in a compound eye image. The proposed network performed 

ye-wise depth estimation and obtained 2.8% and 1.4% higher ac- 

uracy with 15.3% fewer network parameters than the CNN-based 

etwork [7] on two datasets without large-scale pre-training. 

Our main contributions are as follows: 

• We suggest a network design that utilizes the hemispherical 

structure of the compound eye. 
• To the best of our knowledge, this is the first application of a 

transformer structure to compound eye depth estimation. 

. Related Work 

.1. Application of Deep Neural Networks to Compound Eye Images 

There are studies dealing with various computer vision tasks 

sing compound eye images, and recently, deep neural networks, 

specially CNNs, are being applied to compound eye images. For 

xample, [4] proposed a network for estimating objectness on a 

ompound eye image, [5] proposed a low complexity semantic seg- 

entation scheme based on a CNN, and [6] proposed a neural net- 

ork to classify the ego-motion of a compound eye camera. How- 

ver, since there is no compound eye image data, the neural net- 

orks of [4–6] were learned from the images obtained by convert- 

ng 2D RGB images of the real-world into compound eye images. 

n the other hand, [7] collected a dataset from simulation using a 

ompound eye camera, proposed a deep neural network that per- 

orms depth estimation using the collected dataset, and proposed 

 simple method for 3D reconstruction using the estimated depth 

alues. 
83 
Unlike previous studies, we perform depth estimation using a 

ransformer-based network. Also, we train the network from the 

ompound eye image dataset collected from simulation and the 

hotorealistic compound eye image dataset converted from real- 

orld 2D RGB images. 

.2. Vision Transformer 

Since the success of Vision Transformer (ViT) [16] , there have 

een many studies trying to use a transformer as a backbone in 

omputer vision. Among them, [17–19] proposed a network suit- 

ble for dense prediction to extract multi-resolution features us- 

ng the transformer architecture. [17,18] proposed a method for ex- 

racting multi-resolution features through a hierarchical structure 

nd applied it to image classification, object detection, and seman- 

ic segmentation. On the other hand, [19] proposed a method of 

xtracting multi-resolution features in a parallel manner and ap- 

lied it to image classification, semantic segmentation, and human 

ose estimation. 

ViT has the disadvantage of a high computational cost. In addi- 

ion, ViT requires a large amount of pre-training and dataset com- 

ared to CNN-based models. In [18,19] , the amount of computation 

s reduced by dividing the input image into windows and applying 

elf-attention only within each window. [19–21] uses convolution 

nd transformer together to make learning more robust by adding 

n inductive bias to the model through the locality of the convo- 

ution. In this way, they showed good performance even with a 

elatively small amount of dataset. 

Among various methods, the methods most relevant to ours are 

21] and [22] . [21] proposes a self-attention module that applies 

ttention to adjacent pixels in the 2D image, and [22] proposes a 

elf-attention module that obtains an attention map from image 

atches with k keys similar to a query. Unlike previous methods, 

he proposed method is designed for a compound eye structure 

nd applies attention to physically adjacent eye units. 

.3. Monocular Depth Estimation 

Most of the monocular depth estimation algorithms using deep 

eural networks are CNN-based methods [11,12] . The structure of 

he network and the loss function significantly affect the perfor- 

ance of depth estimation. [11] used two networks, one for coarse 

stimation and the other for refining coarsely estimated values. 

hey also used a scale-invariant loss independent of the global 

cale of the depth value during training to solve the problem 

f being sensitive to the scale of the data. [12] proposed a net- 

ork that performs depth estimation using multi-resolution fea- 

ures and used three complementary losses for training to obtain 

lear boundaries. 

Recently, there have been studies that applied the trans- 

ormer to depth estimation. [13,14] propose methods for monoc- 

lar depth estimation using the transformer architecture. Among 

hem, [13] uses the feature selected from ResNet [23] as an input 

f the transformer network and performs depth estimation by fus- 

ng multi-resolution features in parallel. 

. Background 

.1. Compound Eye Camera Structure 

A compound eye camera has a hemispherical structure in which 

ingle eye cameras are arranged in circular layers ( Fig. 2 a). Here, 

he layer is a set of single eyes with the same elevation angle. 

ach single eye camera is a camera with low resolution, and in 

he n th layer, m n single eye cameras are circularly located at regu- 
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Fig. 2. An illustration of the compound eye camera. Each gray dot represents a sin- 

gle eye of the compound eye. (a) A compound eye camera with 11 layers. (b) Top 

view of the compound eye camera with 4 layers. 

Fig. 3. An illustration of the compound eye images in various forms. All three ex- 

amples used compound eye images with 11 layers. (a) Example of visualization by 

projecting a compound eye image (b) Example of visualizing a compound eye im- 

age in the same form as a 2D RGB image (c) An example of vectorizing a compound 

eye image. 
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ar intervals ( Fig. 2 b). The elevation angle between adjacent layers 

s identical for all layers. 

.2. Compound Eye Data for Neural Network 

There have been studies that applied neural networks to com- 

ound eye images [4–7] . They used the compound eye image data 

ormat suitable for the neural network, and a similar format is 

sed in this paper. To arrange the compound eye image ( Fig. 3 a)

n a rectangular shape like a 2D RGB image, they use a compound 

ye camera with a structure in which only one single eye exists at 

he center of the camera and 8 n − 8 single eyes in the n th layer.

n this configuration, a compound eye image can be visualized in a 

D RGB image form. An example of a compound eye image in the 

orm of 2D RGB image is illustrated in Fig. 3 b. In order to make

t suitable for the neural network’s input, we use a compound 

ye image vectorized as a tensor. The vectorized compound eye 

mage has a representation of R 

(2 l−1) ×(2 l−1) ×3 S 2 [4] , where l is the 

umber of layers and S × S is the resolution of a single eye. The 

tructure of vectorized compound eye image can be seen in Fig. 3 c. 

he compound eye depth image has one value for each single eye, 

o it has a representation of R 

(2 l−1) ×(2 l−1) ×1 [7] . 

. Method 

We propose a transformer-based network for eye-wise depth 

stimation which estimates one depth value per single eye. We use 

 transformer block and a convolution layer together. The network 

stimates one depth value for each single eye unit using a vector- 

zed compound eye RGB image as network input. An overview of 

ur network can be seen in Fig. 4 . 

We propose local selective self-attention, described in 

ection 4.1 , that adds locality to the transformer network and 

ropose an eye selection module, described in Section 4.2 , that 

educes the computational complexity and improves performance. 

hrough these modules suitable for the compound eye structure, 

t became possible to reduce the amount of computation and 

ncrease performance on a small dataset without pre-training. 
84 
.1. Local Selective Multi-Head Self Attention 

Most vision transformer networks are pre-trained on large 

atasets to improve performance. However, large-scale pre-training 

n compound eye image data is difficult due to the lack of publicly 

vailable large datasets. In order to obtain good performance with 

he transformer structure without pre-training, it is necessary to 

dd an inductive bias to the model, such as using a CNN with the 

ransformer. To add locality to the transformer structure, we mod- 

fy the self-attention module to obtain attention maps in the local 

rea from the compound eye image. As shown in Fig. 5 , adjacent 

yes in the compound eye image are different from those in the 

ectorized data format. Therefore, we modified the self-attention 

tructure to extract features by applying attention between the 

yes that are physically close to each other on the compound eye 

amera. 

In ViT, image patches are used as input to the network. Given 

n image x ∈ R 

h ×w ×d of height h , width w and channel dimen-

ion d, the image can be cropped into image patches of size p × p. 

et the set of image patches be X ∈ R 

h 
p × w 

p ×D 
, and let a patch of

osition at i j be X i j ∈ R 

D , where D is d × p × p. Then ViT’s self-

ttention formulation for each attention head is as follows: 

f m 

i j = 

∑ 

a,b∈ N p 
softmax ab 

( 

q m 

i j 
T k m 

ab √ 

D/ M h 

) 

v m 

ab , (1) 

here N p = { a, b | 0 ≤ a < 

h 
p , 0 ≤ b < 

w 

p } , M h is the number of at-

ention heads and f m 

i j 
is the output of the m th attention head. In

his formulation, the queries q m 

i j 
, keys k m 

ab 
, and values v m 

ab 
are lin-

ar transformation of the fraction of patches X m 

i j 
and X m 

ab 
, where 

 

m 

i j 
and X m 

ab 
have a representation of R 

D/ M h . The output of the self- 

ttention module is as follows: 

f i j = Concat [ f 1 i j , · · · , f 
M h 

i j 
] . (2) 

Then, the formulation of the local selective self-attention for 

ach attention head is as follows: 

f m 

ni = 

∑ 

a,b∈ N k (n,i ) 

softmax ab 

( 

q m 

ni 
T k m 

ab √ 

D/ M h 

) 

v m 

ab , (3) 

here N k (n, i ) is a set of indices of k single eyes with large co-

ine similarity to the direction vector of the i th single eye of the 

 th layer. We use a single eye image as an image patch in local

elective self-attention. 

The local selective self-attention can control locality as the 

alue of k changes, and if k is small, it takes a small amount of

omputation compared to other attention methods. 

.2. Eye Selection 

The eye selection method is a sparse attention method with an 

ttention map obtained from the selected eyes. The attention coef- 

cient is used to determine which eyes are paid attention to. The 

ttention coefficient is the ratio of reflecting each eye’s image to 

xtracting the eye’s features in a specific location. It is constant for 

he input image, unlike the attention value, which is dependent 

n the input image. Through this attention coefficient, we can se- 

ect the eyes that are important for extracting features regardless 

f the input image. We then use the attention value and attention 

oefficient to find the degree to which those eyes are used to ex- 

ract features. For each eye of each head, n e eyes with the largest 

ttention coefficient are selected. 
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Fig. 4. Overview of our depth estimation network. Our network fuses parallel multi-resolution features extracted from transformer blocks and estimates the depth through 

a simple depth head. In our transformer block, instead of multi-head self-attention of ViT, we use the eye selection module and local selective multi-head self-attention 

module. 

Fig. 5. An illustration of adjacent pixels on a 2D RGB image and adjacent eyes on 

a compound eye image. (a) and (d) are 21x21 2D images and (b) and (e) represents 

compound eye with 11 layers and 441 single eyes. (c) and (f) show vectorized form 

of (b) and (e). Based on the red pixel, adjacent pixels are expressed in blue. (a) ∼(c) 

represent eight adjacent pixels, and (d) ∼(f) represent 48 adjacent pixels. 
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1 . 25 , 1 . 25 , 1 . 25 
For each attention head, the formula applying the eye selection 

ethod to local selective self-attention is as follows: 

f m 

ij = 

∑ 

a,b∈ N s ( i, j ) 

Norm ab 

( 

softmax ab 

( 

q m 

ij 
T k m 

ab √ 

D/M h 

) 

c m 

ijab 

) 

v m 

ab , (4) 

here Norm ab is a normalization such that the sum of the values 

s 1, c m 

i jab 
∈ [0 , 1] is the attention coefficient and N s (i, j) , a subset

f N k (i, j) , is a set of indices of n e single eyes with the largest

ttention coefficient. 

The attention coefficient is a learnable parameter, and its value 

s updated during learning. Since the selected eyes are changed 

uring training, a similar effect to dropout [24] can be obtained. 

.3. Training Details 

Our network structure can be seen in Fig. 4 . HRFormer [19] is 

odified and used as the backbone network. A simple depth head 

s used as a decoder to estimate the depth value from the features 

xtracted from the backbone. The depth head consists of two lin- 

ar layers whose activation is a ReLU function. Each has 2, 4, and 

 attention heads from high-resolution transformer blocks to low- 

esolution transformer blocks. We use the learnable positional em- 

edding used in ViT. 

We use the log mean absolute error (log-mae) as the training 

oss L to train the depth estimation network. 

 = 

1 

M e 

M e ∑ 

i =1 

| log (d i ) − log (g i ) | , (5) 
85 
here d i is the estimated depth value of the i th single eye, g i is the

round truth depth value of i th single eye and M e is the number of

ingle eyes. We use the Adam optimizer and set the initial learning 

ate as 0.001, weight decay as 0.0 0 01, epoch as 60, and C 1 as 64. 

. Experimental Results 

In this section, we evaluate the performance of our proposed 

etwork and comparing it to other methods: different backbone 

etworks trained from scratch on compound eye images and 

ransformer-based depth estimation methods trained on 2D im- 

ges. We also investigate the effect of using existing pre-trained 

etwork for 2D images on depth estimation in compound eye. In 

ddition, we find out how the local selective self-attention and eye 

election methods affect the performance and computational com- 

lexity. Lastly, we analyze the advantages of eye-wise depth esti- 

ation. 

.1. Dataset 

We learn the depth estimation network from two datasets: 

AZEBO simulation [25] dataset and Matterport3D dataset [26] . 

he GAZEBO simulation dataset is collected using a compound eye 

ith 11 layers and 10 × 10 resolution in the simulation in the same 

ay as [7] . We train a depth estimation network using 7,200 im- 

ges and test it on other 4,0 0 0 images. Since there is no high-

esolution images collected with the compound eye in the real 

orld, we use a dataset that transformed the image of the Mat- 

erport3D dataset into a compound eye image with 11 layers and 

 resolution of 10 × 10 . We train a depth estimation network us- 

ng 32,540 images and test it on other 11,976 images. We use only 

egions with ground truth depth values within 4.5 m. 

.2. Evaluation Metrics 

We compare our method with other existing methods using 

everal metrics. In addition to the log mean absolute error (log- 

ae) described in Section 4.3 , the following metrics are used to 

valuate the performance of several depth estimation methods. 

• root mean squared error (rms): 

√ 

1 
M e 

∑ M e 
i =1 

(d i − g i ) 
2 

• mean relative error (rel): 1 
M e 

∑ M e 
i =1 

| d i −g i | 
g i 

• mean absolute error (mae): 1 
M e 

∑ M e 
i =1 

| d i − g i | 
• threshold accuracy: % of d i s . t max ( 

d i 
g i 

, 
g i 
d i 

) = δ < δthr for δthr = 

2 3 
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Table 1 

Comparison of different methods on the GAZEBO dataset. C 1 is the feature dimension of the first stage of transformer block. 

Method Accuracy Error Params FLOPs Time 

δ < 1 . 25 δ < 1 . 25 2 δ < 1 . 25 3 log-mae mae rel rms (M) (G) (ms/it) 

ConvolutionalNetworks ResNet18 [7] 0.7257 0.8401 0.9016 0.3451 0.2261 0.3472 0.6007 13.2540 0.2753 5.8553 

ResNet50 [7] 0.7160 0.8265 0.8881 0.3867 0.2469 0.4170 0.6553 49.3380 0.6370 9.3107 

Transformers ViT-Base( C 1 = 64 ) [16] 0.5915 0.7800 0.8629 0.5401 0.3348 0.6307 0.7854 0.6081 0.5528 2.6307 

ViT-Base( C 1 = 128 ) [16] 0.5944 0.7843 0.8663 0.5246 0.3300 0.5965 0.7592 2.3140 1.5910 2.6461 

ViT-Base( C 1 = 256 ) [16] 0.6363 0.7962 0.8663 0.5018 0.3175 0.6192 0.7520 9.0180 5.1220 2.6752 

Swin-T( C 1 = 64 ) [18] 0.6742 0.7905 0.8551 0.4807 0.3011 0.6309 0.7931 14.0300 0.4588 6.3447 

Swin-T( C 1 = 128 ) [18] 0.6909 0.8122 0.8770 0.4216 0.2690 0.5154 0.6906 55.9690 1.7910 6.4356 

Transformerswith Conv. CvT-13( C 1 = 64 ) 0.6972 0.8410 0.9068 0.3559 0.2298 0.3250 0.5981 20.5300 0.9216 10.1826 

HRFormer-S( C 1 = 32 ) [19] 0.7211 0.8374 0.8944 0.3853 0.2428 0.4534 0.6712 7.5750 0.3815 23.9575 

HRFormer-S( C 1 = 64 ) [19] 0.7319 0.8441 0.9049 0.3584 0.2249 0.3863 0.6391 30.0010 1.4640 24.3935 

Ours (C 1 = 64) 0.7536 0.8606 0.9168 0.3068 0.2026 0.2875 0.5635 11.2270 0.7687 11.2067 

Table 2 

Comparison of different methods on the Matterport3D dataset. C 1 is the feature dimension of the first stage of transformer block. 

Method Accuracy Error Params FLOPs Time 

δ < 1 . 25 δ < 1 . 25 2 δ < 1 . 25 3 log-mae mae rel rms (M) (G) (ms/it) 

ConvolutionalNetworks ResNet18 [7] 0.5055 0.7750 0.9032 0.5411 0.2967 0.3208 0.7445 13.2540 0.2753 5.8553 

ResNet50 [7] 0.4930 0.7642 0.8971 0.5569 0.3046 0.3296 0.7624 49.3380 0.6370 9.3107 

Transformers ViT-Base( C 1 = 64 ) [16] 0.3232 0.6106 0.8149 0.7640 0.4119 0.4827 0.9589 0.6081 0.5528 2.6307 

ViT-Base( C 1 = 128 ) [16] 0.3265 0.6145 0.8165 0.7592 0.4099 0.4916 0.9478 2.3140 1.5910 2.6461 

ViT-Base( C 1 = 256 ) [16] 0.3333 0.6230 0.8216 0.7492 0.4038 0.4715 0.9456 9.0180 5.1220 2.6752 

Swin-T( C 1 = 64 ) [18] 0.4486 0.7381 0.8839 0.6041 0.3266 0.3838 0.7911 14.0300 0.4588 6.3447 

Swin-T( C 1 = 128 ) [18] 0.4366 0.7298 0.8813 0.6136 0.3319 0.3795 0.8052 55.969 1.7910 6.4356 

Transformerswith Conv. CvT-13( C 1 = 64 ) 0.4749 0.7490 0.8883 0.5820 0.3165 0.3483 0.7943 20.5300 0.9216 10.1826 

HRFormer-S( C 1 = 32 ) [19] 0.4645 0.7555 0.8966 0.5808 0.3137 0.3566 0.7712 7.5750 0.3815 23.9575 

HRFormer-S( C 1 = 64 ) [19] 0.4805 0.7668 0.9027 0.5631 0.3049 0.3372 0.7598 30.0010 1.4640 24.3935 

Ours (C 1 = 64) 0.5190 0.7885 0.9115 0.5214 0.2867 0.3094 0.7201 11.2270 0.7687 11.2067 
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Fig. 7. Results of eye-wise depth estimation with compound eye images in Mat- 

terport3D dataset. From first to last row; Compound eye RGB images, ground truth 

compound eye depth images, estimated depth images using our method. 
.3. Performance Comparison 

.3.1. Comparison to various backbone networks 

We set the k to 49 and the number of selected eyes in the eye

election module to nine. We compare our network with baseline 

ye-wise depth estimation networks using three types of backbone 

etworks on compound eye image datasets such as GAZEBO and 

atterport3D dataset. The first type is CNN-based networks such 

s ResNet18 and ResNet50 [23] , the second is networks using only 

ransformer structures such as ViT-Base [16] and Swin-T [18] , and 

he last is networks using transformer and convolution together 

uch as CvT-13 [20] and HRFormer-S [19] . The comparison results 

an be seen in Tables 1 and 2 . The depth images estimated by our

etwork and the ground truth depth images can be seen in Figs. 6 

nd 7 . In addition, examples of images where our method incor- 

ectly estimates depth and the results are shown in Fig. 8 . 
ig. 6. Results of eye-wise depth estimation with compound eye images in GAZEBO 

ataset. From first to last row; Compound eye RGB images, ground truth compound 

ye depth images, estimated depth images using our method. 

Fig. 8. Examples where our method fails depth estimation. From first to last row; 

2D RGB images, Compound eye RGB images, ground truth compound eye depth im- 

ages, estimated depth images using our method. Most failure cases are when a wall 

is very close or outdoors is included in the image. 
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Table 3 

Comparison of 2D depth estimation methods and our method on the Mat- 

terport3D dataset. 

Method Accuracy 

δ < 1 . 25 δ < 1 . 25 2 δ < 1 . 25 3 

Pixel-wise DPT [14] 0.7202 0.9306 0.9750 

PixelFormer [ 27 ] 0.7267 0.9240 0.9717 

Patch-wise DPT [14] 0.7258 0.9342 0.9779 

PixelFormer [ 27 ] 0.7432 0.9342 0.9762 

Eye-wise DPT [14] 0.3713 0.5707 0.7054 

PixelFormer [27] 0.3439 0.5374 0.6805 

Ours 0.5190 0.7885 0.9115 
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Fig. 9. An illustration of selected eyes in the eye selection module while learning. 

From left to right, it shows the selected eyes at epochs 0, 20, 40, 50, 60 in vector- 

ized form. The two rows are the results of the different eyes of the first transformer 

block. 
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Our network achieves good performance in both datasets 

ompared to other baselines in all metrics. Since all networks 

re trained without pre-training, most transformer-based meth- 

ds show lower performance than the ResNet-based network. 

n the other hand, our network shows better performance 

han the ResNet-based network even though it uses transformer 

tructure. 

.3.2. Comparison to 2D depth estimation methods 

We compare our method with depth estimation state-of-the-art 

SOTA) transformer-based methods learned from 2D images such 

s DPT [14] and PixelFormer [27] on the Matterport3D dataset. For 

D image input, we measure the performance of pixel-wise depth 

stimation, which predicts one depth value per pixel, and patch- 

ise depth estimation, which predicts one depth value per image 

atch of vision transformer. Additionally, for compound eye im- 

ge input, we evaluate the performance of eye-wise depth estima- 

ion, which predicts one depth value per single eye. The results 

f comparing these three depth estimation performances with our 

ethod’s eye-wise depth estimation performance can be found in 

able 3 . 

DPT and PixelFormer show relatively high performance in pixel- 

ise and patch-wise depth estimation than eye-wise depth estima- 

ion. Because of the structural differences between the compound 

ye image and the 2D image, it can be seen that there is a signifi-

ant performance difference between patch-wise depth estimation 

nd eye-wise depth estimation, even though both are coarse depth 

stimations. In addition, the performance of our method is higher 

han that of DPT and PixelFormer in eye-wise depth estimation. 

his result shows that a network with a structure suitable for the 

ompound eye is needed, like our method. 

.3.3. Comparison to fine-tuned ViT 

Pre-training is a widely adopted technique for enhancing per- 

ormance in computer vision tasks. In Section 5.3.2 , DPT, which 

ses ViT pre-trained on the large-scale 2D image dataset and fine- 

uned on the 2D image dataset, showed lower performance than 

urs in eye-wise depth estimation. In order to investigate the im- 

act of pre-training on 2D images on the performance improve- 

ent in compound eye images, we combine a ImageNet pre- 

rained ViT model [28] with our depth head. We then compare the 

esults of fine-tuning the combined network on compound eye im- 

ges with the results of our approach. Table 4 shows the results of 

he comparison in the Matterport3D dataset. 
Table 4 

Comparison of fine-tuned ViT and our mehtod on the Matterport3D data

Method Accuracy 

δ < 1 . 25 δ < 1 . 25 2 δ < 1 . 25 3 log-

ViT-Base (fine-tuned) 0.4266 0.7337 0.8924 0.6

Ours 0.5190 0.7885 0.9115 0.5

87 
The fine-tuned ViT shows higher performance than ViT learned 

rom scratch but lower performance than our network or ResNet- 

ased networks learned without pre-training in Table 2 . From this 

esult, it can be seen that pre-training in 2D images does not have 

 significant effect on performance improvement in compound eye 

mages, unlike in 2D images, due to differences in image structure. 

.3.4. Analysis of our proposed modules 

We perform an ablation study to evaluate the performance of 

ur proposed local selective self-attention and eye selection mod- 

le. Table 5 shows the results of the ablation study in the GAZEBO 

ataset. As shown in the results, combining both modules produces 

he best performance. 

Fig. 9 shows the convergence of the selected eyes by the pro- 

osed eye selection module during training time. It can be seen 

hat the selected eyes for different eyes converge differently. Also 

n Table 5 , it can be seen that the performance increases when the 

ye selection module is used. These results show that the eye se- 

ection module learns effective attention for each eye more than 

ust selecting neighboring eyes which is similar to the CNN-based 

odels. 

Additionally, we compare the depth estimation performance by 

hanging k without the eye selection module to check how the 

erformance is affected by the size of the local region. Tables 6 and 

 show the depth estimation results for different values of k in the 

AZEBO dataset and the Matterport3D dataset, respectively. In the 

AZEBO dataset, k = 9 shows higher performance than others, and 

n the Matterport3D dataset, k = 49 shows higher performance. As 

hown in Figs. 6 and 7 , the Matterport3D dataset has more com- 

lex and diverse images than the GAZEBO dataset. So, it seems that 

epth estimation using a wider area improves performance in the 

atterport3D dataset. 

.3.5. Efficiency of eye-wise depth estimation 

Eye-wise depth estimation is a coarse prediction that predicts 

he depth values of several pixels as a single value. To check the 

ffect of eye-wise depth estimation, we compare the network that 

earned pixel-wise depth estimation from 2D RGB images with the 

etwork that learned eye-wise depth estimation. Using the net- 

ork from [7] , it is trained on the same amount of 2D images

n the GAZEBO dataset. We measured the performance by aver- 

ging the values of 10 × 10 patches of the ground truth depth map 

nd the estimated depth map. The comparison results can be seen 
set. 

Error Params FLOPs 

mae mae rel rms (M) (G) 

085 0.3273 0.3475 0.8011 87.3730 38.3720 

214 0.2867 0.3094 0.7201 11.2270 0.7687 
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Table 5 

Ablation study on the GAZEBO dataset 

Method Accuracy Error Params FLOPs 

δ < 1 . 25 δ < 1 . 25 2 δ < 1 . 25 3 log-mae mae rel rms (M) (G) 

Ours 0.7536 0.8606 0.9168 0.3068 0.2026 0.2875 0.5635 11.2270 0.7687 

w/o eye selection 0.7473 0.8481 0.8944 0.3453 0.2275 0.4205 0.6135 11.2270 0.7687 

w/o local selective self-attention 0.7489 0.8518 0.9063 0.3323 0.2162 0.3747 0.5997 11.2270 0.8890 

Table 6 

Comparison according to k on the GAZEBO dataset. 

Accuracy Error FLOPs 

δ < 1 . 25 δ < 1 . 25 2 δ < 1 . 25 3 log-mae mae rel rms (G) 

k = 1 0.7476 0.8458 0.8976 0.3542 0.2320 0.4461 0.6322 0.7648 

k = 9 0.7473 0.8481 0.8944 0.3453 0.2275 0.4205 0.6135 0.7687 

k = 25 0.7473 0.8462 0.8977 0.3560 0.2323 0.4443 0.6337 0.7764 

k = 49 0.7472 0.8455 0.8965 0.3558 0.2332 0.4485 0.6343 0.7781 

Table 7 

Comparison according to k on the Matterport3D dataset. 

Accuracy Error FLOPs 

δ < 1 . 25 δ < 1 . 25 2 δ < 1 . 25 3 log-mae mae rel rms (G) 

k = 9 0.5130 0.7805 0.9054 0.5333 0.2929 0.3172 0.7367 0.7687 

k = 25 0.5156 0.7870 0.9113 0.5255 0.2881 0.3081 0.7256 0.7764 

k = 49 0.5159 0.7883 0.9118 0.5247 0.2874 0.3083 0.7229 0.7871 

Table 8 

Comparison of the performance of depth estimation and eye-wise depth estimation on the GAZEBO dataset. The performance of all three 

trained networks is measured when one depth value is estimated for a 10 × 10 image (image patch or single eye image). 

Method Accuracy Params FLOPs 

δ < 1 . 25 δ < 1 . 25 2 δ < 1 . 25 3 (M) (G) 

ResNet18 (Pixel-wise) 0.4824 0.6554 0.7603 13.2350 22.7950 

ResNet18 (Eye-wise) 0.7257 0.8401 0.9016 13.2540 0.2753 

Ours (Eye-wise) 0.7536 0.8606 0.9168 11.2270 0.7687 
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n Table 8 . The pixel-wise depth estimation network has a con- 

iderable computational cost compared to eye-wise depth estima- 

ion networks and has low performance. This result shows that 

ye-wise depth estimation is an efficient coarse estimation method 

ith a small amount of computation. 

. Conclusion 

In this work, we propose an eye-wise depth estimation net- 

ork for compound eye cameras. Our network is based on the 

ransformer architecture with local selective self-attention and eye 

election modules proposed to suit the compound eye structure. 

ith low resources, our network performs better than the ResNet- 

ased eye-wise depth estimation network without pre-training and 

hows higher performance than other transformer-based struc- 

ures. In addition, we find that pre-training in 2D images does 

ot significantly affect performance improvement in compound eye 

mages due to the distinct structure of compound eye images com- 

ared to 2D images. 

To the best of our knowledge, the proposed method is the first 

ork estimating depth by applying a transformer structure to a 

ompound eye image. The proposed method can be applied to 

arious vision tasks requiring depth information using compound 

yes. Additionally, our approach is expected to be available as a 

ethod of recognition for various robots, such as small mobile 

obots, when combined with the compound eye camera hardware. 
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