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Abstract— In this paper, we proposed a localizability-based
topological local object occupancy map (TLO2M) for hom-
ing navigation. The proposed approach is a combination of
topological and metric map representations. We utilize object
detection to advance the occupancy grid map and train a
structural localizability measuring network with it. As a result,
the TLO2M is built based on structural localizability and
feature similarity. The proposed method shows a 0.955 success
rate of the homing task at the Gibson environments.

I. INTRODUCTION

Homing is a navigation task which is a problem of
returning to the agent’s initial point by following the reverse
path of the agent came. One strategy to solve this problem
is to build an environment map during the first journey,
and use it to follow back to the starting point. At this
point, the further approaches are diverse based on the way
of map representations. One can build metric maps using
simultaneous localization and mapping (SLAM) algorithms
[3], [8], or topological graph maps [7], [9], or even internal
memory maps [6]. Each of these strategies have advantages
and disadvantages. The metric maps using SLAM algorithm
are easy to use when the map is built completely, but since
the SLAM algorithms need an exploring stage for mapping,
the map built on the online agent trajectory is not reliable.
In addition, the SLAM-based algorithms require high input
frequency and do not contain semantic information of the
environment. On the other hand, topological graph maps
are usually built based on semantic information such as
similarity [9], and reachability [7]. However, navigation
between the nodes of the topological graph maps is less
reliable since the map does not contain dense information
of free space and obstacles. In the case of internal memory
[6], it is an efficient way to keep information of the online
trajectory, but the memory is not robust when the agent is
out of the exact trajectory memorized.

In this paper, we propose a novel visual path map rep-
resentation called topological local object occupancy map
(TLO2M) which is a combination of the topological and
metric map representations. To build a TLO2M, we utilize
object class information and the structural uniqueness of
a location. With the TLO2M representation, we build an
efficient map for the homing navigation that contains both
semantic information and free space information.
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II. RELATED WORK

Kumar et al. [6] proposed the importance of the path-
following and homing problems in their paper. They tackled
the problem by building intrinsic visual memory of the first
trajectory that can be used in the path-following or homing
phases. Their approach showed good results on both path-
following and homing navigation in simple trajectories under
40 steps. However, when the length of the trajectory grows,
the performance of both tasks drops significantly which
shows the weakness of the proposed method in long-term
scenarios. Also, the visual memory proposed in [6] does not
contain extrinsic information, it is not robust enough when
the agent is out of the original trajectory.

Chaplot et al. [1] used object detection to make a grid map
with semantic information. This is similar to our approach
of making object occupancy map which will be described in
Section III-B. In this paper, we used a probabilistic approach
based on the occupancy grid map rather than the learning-
based denoising approach which was used in [1].

III. METHOD

A. Overview

In this paper, we tackle a homing navigation, which is a
problem of returning to the initial point by following the re-
verse path of the agent came. We assume that the agent only
has an RGB-depth (RGB-D) camera sensor with a low input
frequency. To solve the homing navigation in this condition,
we propose a novel visual path memory called the topolog-
ical local object occupancy map (TLO2M). The TLO2M is
a graph based map representation, where the nodes are local
map of representative locations N = {n1, ..., nk} among the
agent’s original trajectory T = {t1, . . . , tn}. In this section,
we describe steps to build the TLO2M and the homing
navigation method using the TLO2M.

B. Object Occupancy Map

For the nodes of TLO2M, we use a metric map represen-
tation of the local environment based on the occupancy grid
map. The occupancy grid map Mocc ∈ Rm×m is a map that
represents the probability of the existence of obstacles at each
cell. A 2D occupancy grid map can be built by projecting 3D
point clouds of observed obstacles over time. With a depth
camera and the camera intrinsic parameters, we can obtain
3D point clouds by back-projecting the depth image (Dt)
at time step t. However, the conventional occupancy grid
map only contains information on the location of obstacles
and has a limitation of describing semantic features of the
environment. In this paper, we proposed an object occupancy



map (O2M), L ∈ Rm×m×(1+c), which is an advanced
version of the occupancy grid map that can represent the
category of objects as well as locations. The O2M has extra
c channels for each grid that corresponds to c kinds of object
categories. Similar to the ordinary occupancy grid map, each
c channel represents the probability of the existence of the
corresponding object at the target location. To get the object
category information, we use the pretrained Mask R-CNN [4]
on the RGB observations, which outputs object masks and
their probability. Since the object masks on an RGB image
can be projected to the same location as the corresponding
depth image, we can give the point clouds obtained from
the depth image the object class information. The O2M is
built by projecting these point clouds containing object class
information on a 2D plane. Since the O2M is the sum of
point clouds across the height, multiple channels among c
classes can be occupied at a single cell of an O2M. With the
O2M style map, the localization performance by matching is
improved than the ordinary occupancy grid map due to the
additional semantic features.

C. Topological Local Object Occupancy Map

The TLO2M is a topological map representation of a path
which uses the O2M as the nodes of the graph. The goal of
using TLO2M is to build a sparse memory of a trajectory
that only contains information, the O2M, near representative
positions rather than memorizing the map of the entire trajec-
tory. Therefore, it is important to make a good node selection
policy to chooses representative positions that can express
the trajectory well. Then, by what criteria can we judge
whether a position is representative or not? Considering
the homing navigation task, the node points on the original
trajectory are used as subgoals of the agent navigating to
the initial point. If an agent can clearly recognize that it
reaches a certain location, that location can be role as a good
subgoal for the navigation. From this point of view, we select
positions that can be well localized as the node positions of
the TLO2M. The following sections describe the details of
the node selection policy.

1) Structural localizability: As mentioned above, whether
a localization at a position work well or not, which we
call localizability of a position, is an important condition
of choosing node positions. In this paper, we focus on the
structural uniqueness of an O2M to measure the localizability
of a position. If we have a dataset of O2M observations and
their matching scores of every pair, the observation with a
unique structure will have low matching scores with others.
With this idea, we propose a method to measure structural
localizability.

L(ok) = softmax(M(ok, o1),M(ok, o2), . . . ,

M(ok, ok). . . ,M(ok, on))[k], o1, ..on ∈ O
(1)

We call L(ok) as the localizability score of an O2M
observation ok obtained from the RGB-D image Ik. Here,
M(oi, oj) is a matching score between oi and oj by using the
method suggested in [5], where O is a dataset of O2M. The

matching score of ok has maximum value in self-matching,
M(ok, ok), and the value of M(ok, ol) increases as ok and
ol have similar structure. That is, if there are fewer structures
similar to ok in O, L(ok) increases. Therefore, if the value
of |O| is large enough, L(ok) can well express how unique
is the given structure generally.

However, since calculating L requires a large dataset to
compare, it is not realistic to use it to determine whether
or not the current observation is an impressive point by
measuring at inference time. To solve this problem, we train
a neural network φ that can infer the localizabilty score
with a single observation input. The φ is a CNN-based
binary classification network that determines whether the
observation is structurally unique or not. To train φ, we first
collected a ground truth dataset consist of the pairs of Ik,
ok and L(ok). Here, we use large enough randomly sampled
subsets of the O, O(k), to calculate L(ok). The φ is trained
in a supervised manner with the input of Ik and the binary
target set by thresholding L(ok). As a result, the trained φ
can infer the structural localizability of the corresponding
position.

L̂(ok) = φ(Ik), L̂(ok) ∈ {0, 1} (2)

2) Feature similarity: In addition to the structural unique-
ness, whether the nodes are possible to distinguish each other
well is also important to the localization. Here, we use unsu-
pervised RGB-D image features to measure the similarity of
two observations. We train a neural network, called feature
similarity network (ψ) , to get and compare the similarity
of RGB-D image features of the robot navigation data by
using the unsupervised representation learning method called
SimSiam [2]. The feature similarity network outputs the
similarity (S) of two RGB-D inputs as a score between 0
to 1.

S(i, j) = ψ(Ii, Ij), S(i, j) ∈ [0, 1] (3)

We choose the nodes of the TLO2M to have low similarity
score between the neighboring nodes.

3) Node selection algorithm: The proposed node selection
algorithm considers both structural localizability and feature
similarity. Since we use the trained φ and ψ networks, we
can get the structural localizability and feature similarity with
the online observations of the agent’s initial trajectory. The
proposed node selection algorithm is described as below.

Here, dist(ti, tj) is a expected distance between
two points based on the actions a(ti), . . . , a(tj).
Integrate(oc, o(tk)) represents the addition of two
O2M oc and o(tk) of grid values of the matched locations
with reference to the relative expected location of tk
on oc. Since the L̂ is trained to learn general structural
uniqueness, there is a phenomenon that the neighbors of
the position which are classified as high localizability are
also classified as high localizability. This is because there
is no large difference of observed structure during doing a
small number of actions. If all of these nearby points are
used as nodes, the map will be inefficient because of the
large overlaps, so we set a threshold thdist to guarantee



Algorithm 1 Node selection algorithm
Result: Nodes N
Original trajectory : T = {t1, . . . , tn},
RGB-D observation : I(tk), O2M : o(tk), action : a(tk) at
position tk
Current O2M : oc
Node set : N
oc ← o(t1) N ← N ∪ o(t1)
LastNode← t1
for k ← 2 to n do

if dist(tk, LastNode) < thdist then
oc ← Integrate(oc, o(tk))

else
if L̂(I(tk)) == 1 or S(tk, LastNode) < thsim
then
N ← N ∪ oc, LastNode← tk

end
end

end

Fig. 1. An example of a TLO2M. The left figure shows the entire O2M
map of the trajectory and the right one is the corresponding O2M. The
colored grid represent the most major object classes in that position. The
cyan dots of the left map corresponds to the node positions of TLO2M of
right side. The edges represent the rough relative position of the nodes. The
blue dot represent the initial point.

the minimum distance between the nodes. We also use the
expected relative position obtained by the action sequences
to set the distance and direction of the edges between
nodes of the TLO2M. Although the relative positions are
not accurate due to the actuation noise, it can give rough
information of where to go to the agent navigating through
the nodes. Figure 1 shows an example of the TLO2M.

D. Homing with TLO2M

The basic strategy of homing path planning using TLO2M
is to do step-by-step path planning with nodes as subgoals.

TABLE I
EXPERIMENTAL RESULTS OF THE HOMING NAVIGATION IN THE GIBSON

ENVIRONMENTS WITH LOW INPUT FREQUENCY

Success Avg path length Avg sparsity
ORB-SLAM2 [8] failed failed failed

O2M w/o node split 0.909 51 1
TLO2M w/o object class 0.939 51 0.105

TLO2M 0.955 51 0.105

The nodes of TLO2M are the O2M form which contains
information about free space and obstacles around the node
position, and edges contain information about rough relative
position between nodes. Therefore, the location of the center
position of the neighboring node can be localized in the node
by using edge information. With the current O2M and the
next subgoal position, we can plan a path to the subgoal from
the current position by using the A* algorithm. Although the
relative goal positions are not accurate, the agent can arrive
near the subgoal position, which is in the range of the next
node O2M. Therefore, after executing the obtained actions
of the path plan, the agent localizes and updates its position
on the O2M of the next node. Since the localized position
of the updated agent may differ from the true position of
the target subgoal node position, the agent repeatedly plans
and runs the path to the true next node position until the
expected distance becomes less than a threshold. The homing
navigation is done by repeatedly reaching the next node
position by the above process until the agent reaches the
initial position of the original trajectory.

IV. EXPERIMENTS

In the experiments, we use Habitat simulator [10] based
on Gibson dataset [11]. The simulation environment consists
of indoor scenes of 32 different houses which split as 20
for train, and 12 for test. We use 14 object classes which
are contained in the indoor environments for the feature of
the O2M: chair, couch, potted plant, bed, dining table, toilet,
TV, laptop, microwave, oven, sink, refrigerator, clock, and
vase. For training L̂(ok) network, we collected localizability
score dataset from 13,566 numbers of panoramic RGB-
D images captured from the Gibson dataset. We used the
pretrained Mask R-CNN to build O2M for each observation,
then obtained the localizability score for each observation
by using equation (1). Here, the L(ok)s are calculated with
respect to the randomly sampled 1,024 observations. These
panoramic RGB-D images are also used to train the feature
similarity network. To experiment with a realistic agent, we
adopt the actuation noise model suggested in [6] rather than
using an accurate action model. We also assume the low-
frequency panoramic RGB-D inputs that can be considered
in a mobile robot with limited resources, which means the
action of the agent is discrete as forwarding step size 0.25m
and 30◦ of the rotation angle.

The results of the homing navigation in the Gibson en-
vironments is described in Table I. In Table I, the average
sparsity is calculated as the average number of nodes divided
by the average path length. The results show that the graph



representation of the TLO2M gives not only memory effi-
ciency but also performance advances. This is because, in
the TLO2M form, the localization steps only done near the
nodes which are selected to be well localized. The result of
the TLO2M without object class shows that the O2M helps
localization than the ordinary occupancy grid map.

Also, we tried the widely used visual SLAM algorithm
such as ORB-SLAM2 [8], but we found out that this algo-
rithm fails when the input frequency is low like our settings
due to the low matching features.

V. CONCLUSION

We propose a novel visual path memory map called the
TLO2M. The TLO2M utilizes the advantages of graph map
and grid map by using semantic features. The proposed
method shows a 0.955 success rate of the homing navigation
task at the Gibson environments. Since the proposed algo-
rithm works well with the low input frequency, it can be used
applied to mobile robots. The concept of the localizability-
based map memory can be expanded to future works.

ACKNOWLEDGMENT

This work was partly supported by the Institute of Infor-
mation & communications Technology Planning & Evalu-
ation(IITP) grant funded by the Korea government(MSIT)
(No. 2019-0-01309, Development of AI Technology for
Guidance of a Mobile Robot to its Goal with Uncertain Maps
in Indoor/Outdoor Environments).

REFERENCES

[1] Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta, and Ruslan
Salakhutdinov. Object goal navigation using goal-oriented semantic
exploration. In Proceedings of the Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[2] Xinlei Chen and Kaiming He. Exploring simple siamese representation
learning. arXiv preprint arXiv:2011.10566, 2020.

[3] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse.
Monoslam: Real-time single camera slam. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 29(6):1052–1067,
2007.

[4] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2017.

[5] Joao F Henriques and Andrea Vedaldi. Mapnet: An allocentric spatial
memory for mapping environments. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[6] Ashish Kumar, Saurabh Gupta, David Fouhey, Sergey Levine, and
Jitendra Malik. Visual memory for robust path following. In Pro-
ceedings of the Advances in Neural Information Processing Systems
(NIPS), 2018.

[7] Xiangyun Meng, Nathan Ratliff, Yu Xiang, and Dieter Fox. Scaling
local control to large-scale topological navigation. In Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), 2020.

[8] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE Transactions
on Robotics, 33(5):1255–1262, 2017.

[9] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-
parametric topological memory for navigation. In Proceedings of the
International Conference on Learning Representations (ICLR), 2018.

[10] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao,
Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun,
Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A Platform for
Embodied AI Research. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019.

[11] Fei Xia, Amir R. Zamir, Zhiyang He, Alexander Sax, Jitendra Malik,
and Silvio Savarese. Gibson Env: real-world perception for embodied
agents. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.


