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Vision-Based 3D Reconstruction Using a Compound Eye Camera
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Abstract: The vision-based 3D reconstruction methods have various advantages and can be used in various applications
such as navigation. Although various vision-based methods are being studied, it is difficult to reconstruct many parts
at once with a general camera because of a small FOV. To solve this problem, we propose a coarse but lightweight
reconstruction method using a camera with a unique structure called a compound eye with various advantages such as
large FOV. In the process, we devise a network that performs depth estimation on a compound eye structure to obtain a
depth image containing 3D information from an RGB image. We tested our methods by collecting data using a compound
eye camera implemented in a Gazebo simulation and simulation scenes we created. As a result, our 3D reconstruction
method using the data we collected and the confidence score from our depth estimation result, can capture the environment
with a high probability of 97.51%.
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1. INTRODUCTION

Environment reconstruction is an important problem
for mobile robots to accomplish tasks like navigation.
Depending on the type of sensor used, most environ-
mental restoration methods are classified into two types:
LIDAR-based methods [1, 2] and vision-based methods
[3–5]. The LIDAR-based methods have the advantage of
high accuracy but have the disadvantages of dependence
on the expensive sensor and limited in the LIDAR detec-
tion range. On the other hand, the vision-based methods
using RGB cameras have a low price and no distance lim-
itation, while accuracy is relatively low and sensitive to
ambient light.

While 2D environment information is enough for sim-
ple navigation scenarios, some types of mobile robots,
such as UAVs, require 3D environment information for
navigation [6]. However, vision-based 3D reconstruc-
tion methods using ordinary camera have a weakness that
much information cannot be obtained instantly due to the
limited field of view (FOV). In this paper, we tackle the
vision-based 3D reconstruction by using a unique camera
structure called the compound eye camera, which has a
large FOV.

The compound eye camera, which mimics the eyes
of insects, is a structure in which many small-resolution
single eye cameras are located on the surface of a hemi-
sphere. Due to this unique structure, compound eye cam-
era has various advantages such as a large FOV, low aber-
rations, and a large depth of field [7–9]. There have been
several studies, such as ego-motion estimation [9] and se-
mantic segmentation [8], using this structure of the com-
pound eye. The tasks studied in previous studies require
only 2D information, but in the case of 3D reconstruction,
3D information such as depth information is required.
However, the depth sensor is more expensive than the
RGB sensor, so it is inefficient to use the depth sensor
for every single eye.

In order to address these problems, we propose a novel
depth estimation network that suits for the unique struc-
ture of the compound eye images, which the traditional
depth estimation methods cannot deal with. Further-
more, we propose a point cloud based 3D reconstruc-
tion method with a compound eye camera using single-
eye-wise depth estimation results. The proposed method
aims for a coarse 3D environment reconstruction that is
lightweight, which is suitable for small robots with lim-
ited resources. In experiments in ROS simulation, we im-
plemented a compound eye camera and indoor scene en-
vironment. In the test environment, the proposed method
achieved 97.51% accuracy of 3D reconstruction.

The contributions of the paper are summarized as fol-
lows :
• We propose a depth estimation network that works on
compound eye images.
• We propose a coarse but lightweight 3D point cloud
based reconstruction method with the compound eye.
• We implement compound eye in simulation, enabling
data collection and real-time simulation.

2. RELATED WORK

2.1 Deep Learning Applications with Compound Eye
There have been some studies dealing with various

computer vision tasks by applying a deep neural network
to a compound eye image [7–9]. [7,8] designed the com-
pound eye hardware prototype and applied a deep neural
network to the compound eye image of the same struc-
ture. A network for objectness estimation on a compound
image was proposed in [7], and a scheme for semantic
segmentation with low complexity was devised in [8].
[9] proposed convolution neural network (CNN) based
ego-motion classification algorithm in the same image
structure. However, none of them used images obtained
through compound eye cameras. They instead used 2D



Fig. 1. Examples of scenes in Gazebo simulator

RGB images converted into compound eye images.

2.2 Monocular Depth Estimation
Most of the recent monocular depth estimation algo-

rithms are CNN-based [10–13]. Many studies have been
improving performance using various network structures
and losses. For example, in [10], two networks were
used: a network that predicts a coarse depth map through
a global feature and a network that refines a coarse depth
map. In training, they used a scale-invariant loss that is
independent of the global scale of the depth value. [12]
proposed a network for depth estimation by combining
features extracted from different scales. In addition, they
used a combination of complementary losses, each ob-
tained from the difference in depth, difference in gradi-
ent, difference in surface normal between estimated depth
map and ground truth depth maps.

2.3 Vision Based 3D Reconstruction
There have been several studies of vision-based 3D re-

construction. Most vision based 3d reconstruction meth-
ods use depth image to obtain 3d information [3, 4].
[3] performed dense 3D surface reconstruction in real-
time by fusing the depth data obtained while moving the
Kinect sensor. Unlike [3], which can only be used in
largely static environments, [4] enables 3D surface recon-
struction in non-rigid scenes. In [4], the scene of each
frame is transformed into the first frame through the mo-
tion field, and the transformed data is combined in the
same way as in [3]. However, this method is not suitable
for the reconstruction of large environments.

3. METHOD

3.1 Construct Simulation Environment
We constructed an environment that can collect com-

pound eye data to learn depth estimation and test our
3D reconstruction method. In the simulation, we imple-
mented a compound eye camera and created scenes sim-
ilar to the real one. Unlike [7–9], which transformed a
2D RGB image into a compound eye image for network
training, we collected images using a compound eye cam-
era module in the simulation.

3.1.1 Compound eye camera in simulation
We implemented a compound eye camera on the

Gazebo simulator [14]. The compound eye camera con-
sists of several image sensors implemented in the simula-
tor. Each image sensor, which we call single eye, receives

Fig. 2. Examples of Compound eye RGB images

an RGB-D image as input and has low resolution. The
compound eye camera has a structure in which these sin-
gle eyes are placed in multiple layers on the hemisphere’s
surface. There is one single eye in the center of the sensor
in the first layer, and in the nth layer other than the first,
8n− 8 single eyes are placed in a circular shape at regu-
lar intervals. The number of layers l and the resolution of
a single eye can be changed in the simulation. We used
compound eyes with 441 single eyes in 11 layers, and the
size of each single eye image is 10 × 10 pixels, which
shows better performance than other configurations for
tasks in [7–9].

3.1.2 Simulation scenes and compound eye data
We created simulation scenes on Gazebo to use our

compound eye camera. Several objects such as desks and
chairs were arranged to generate realistic scenes like of-
fice and cafe. We created nine scenes with sizes ranging
from 10×10 m2 to 20×20 m2. Sample scenes are shown
in Fig. 1.

Compound eye image Ic ∈ R 21×21×3×10×10 and
compound eye depth image Dc ∈ R 21×21×1 were col-
lected at each position by randomly changing the position
of the compound eye camera on the environment. The ex-
amples of images are shown in Fig. 2. Each single eye
image is partially overlapped with the adjacent single eye
image.

3.2 Depth Estimation with Compound Eye Image
3.2.1 Network architecture

Similar to the previous studies about depth estimation
[10–13], our network is CNN based. The difference is
that each pixel of the output depth map represents the av-
erage depth value of the corresponding single eye view.
Since we use one depth value for one single eye camera,



Fig. 3. Overview of our depth estimation network

our result is coarse compared to the depth estimation re-
sult using a typical image. Fig. 3 shows an overview
of our network for depth estimation. The compound eye
image data described in 3.1.2 is the network input. The
network is composed of two parts; encoding and decod-
ing parts. In the encoder, features of each single eye im-
age are first extracted through 1 × 1 convolution layer,
and then features at multiple scales are obtained using the
ResNet18 [15] structure. In the decoder, the features from
the encoder are upsampled to the depth map size using a
convolution layer and bilinear upsampling. Also, through
skip connections, features of multiple scales are upsam-
pled to match depth map size and then concatenated with
the features from the decoder. The final output of the net-
work is computed from the integrated features.

The network’s output consists of two components.
One is a binary classification output that represents
whether the depth value of each single eye is within the
depth threshold dth, and the other is a scalar output that
estimates the depth value of each single eye view. Since
the proposed method is designed for small robots and the
estimation error increases as the distance increases, it is
more effective to use only the depth values at a close dis-
tance. So, we improved the accuracy by using depth es-
timation only on single eye views classified as short dis-
tances. We used 4.5 m as dth.

3.2.2 Loss function
For training our network, we used the loss L by adding

the classification loss to the regression loss used in [12].
We define the Loss L between the estimated depth map d
and the ground truth depth map g:

L(d, g) = Lbce(d, g) + γLreg(M(d),M(g)), (1)

where Lbce is binary cross entropy loss function, γ is
weight parameter and M defined as follows:

M(x) =

{
x, if x < dth

0, otherwise.
(2)

We define Lreg as weighted sum of three loss functions:

Lreg = Ldepth + λLgrad + µLnormal, (3)

where

Ldepth =
1

n

n∑
i=1

F (ei), (4)

Lgrad =
1

n

n∑
i=1

(F (∇x(ei)) + F (∇y(ei))), (5)

Lnormal =
1

n

n∑
i=1

(1− 〈ndi , n
g
i 〉√

〈ndi , ndi 〉
√
〈ngi , n

g
i 〉
), (6)

where F (x) = ln (x+ α) and ei = ‖di − gi‖1. See
Section 3.2 in [12] for more details regarding Lreg .

3.3 3D Reconstruction with Compound Eye Depth
Our algorithm performs 3D reconstruction using tra-

jectory data consisting of a sequence of RGB-D com-
pound images. We reconstruct the environment using
only the part where the depth value was below the thresh-
old and represented the reconstructed result in the form
of a point cloud. The compound eye has a structure in
which each single eye has a different direction and one
depth value. We form a point cloud at the position repre-
sented by the direction and depth value of each single eye
in one state of the trajectory. First, we consider the case
when compound eye camera exists at the origin O along
the x-axis. Let (n+1)th layer’s ith single eye as Cn,i, the
direction vector of Cn,i as un,i, where u0,0 = [1, 0, 0]T .
In this case, un,i is calculated as follws:

un,i = Rxy(θ)Ryz(αn · i) · u0,0 (7)

where

Rxy(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 ,

Ryz(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,

θ is the azimuth angle between OCn,i, OCn+1,i, and
αn is the difference of elevation angles between
OC ′n,i, OC

′
n,i+1 whereC ′n,i is the projected point ofCn,i

on the yz plane. Then, in the general case, we can calcu-
late the point xn,i corresponding to Cn,i as follows:

xn,i = Pc + dn,i ·R · un,i, when dn,i < dth. (8)



where Pc is the position of the compound eye camera’s
center, dn,i is the depth value ofCn,i and R is the rotation
matrix of the compound eye camera.

To integrate our algorithm with the depth estimation
method, we used a confidence score, representing the re-
liability of the reconstruction results. Since our depth es-
timation result is not perfectly accurate, there are errors
in the reconstruction results using them. Therefore, the
confidence score is updated while reconstruction along
the trajectory, and points with a confidence score greater
than one are considered valid observations. We use the
probability p that the error of the depth estimation value is
below a certain threshold to update the confidence score.
In the confidence score update step, if the distance be-
tween the points of the newly added point cloud and the
nearest previous point is less than 0.8 m, p is added to
the confidence score of that point. We use KD-tree [16]
to find the nearest point. For a detailed description of the
algorithm, see Algorithm 1.

Algorithm 1 can reconstruct many areas at once by us-
ing the large FOV of the compound eye camera. Also,
since we perform depth estimation in single eye wise, the
size of the estimated depth map is smaller than that of a
typical depth image.

Algorithm 1 3D reconstruction with depth estimation
Input: depth estimation network N, trajectory T =
{(vi, Ii)}Mi=1 where vi is position and rotation of
camera, Ii is rgb compound eye image

Output: Poutput : set of points
1: pc = ∅
2: for i = 1→ N do
3: P = depthtopoints(N(Ii), vi) . using Eq. 7

and Eq. 8.
4: pc′ = pc
5: for each point ∈ P do
6: if i 6= 1 then
7: idx, distance = KDtree(point, pc) .

find nearest neighbor
8: if distance < 0.8 then
9: pc′[idx][1]← pc′[idx][1] + p .

update confidence score
10: pc′ ← pc′ ∪ {(point, p)}
11: pc← pc′

12: Poutput = ∅
13: for each (point, score) ∈ pc do
14: if score ≥ 1 then
15: Poutput ← Poutput ∪ {point}

4. EXPERIMENTS

4.1 Dataset
Depth estimation and 3D reconstruction experiments

were conducted in simulation. There are nine scenes we
created in our simulation. Each was made to imitate cafe,
kitchen, and office, as shown in Fig. 1. They has a size
of about 10 × 10 m2 to 20 × 20 m2 We created scenes

by placing objects so that the distance between them does
not exceed 2 m.

For each scene, we collected data using the compound
eye camera we implemented. A compound eye camera
was randomly spawned, and 1000 images were collected
from each scene to collect 9000 images. Among them, in
4 scenes, 12 trajectories consisting of 100 images were
collected in consecutive positions while moving the cam-
era slightly. We trained a depth estimation network using
7000 images and tested it on other 2000 images. The tra-
jectory data were used to test the 3d reconstruction.

4.2 Performance Comparison
4.2.1 Depth estimation

We compared our trained depth estimation network
with the mean depth image computed across the train-
ing set. We evaluated each method using a measurement
called threshold accuracy, which is as follows:

% of di s.t max(
di
gi
,
gi
di
) = δ < δthr. (9)

As in many other papers, we compared the performance
using three values of δthr: 1.25, 1.252, and 1.253.

4.2.2 3D reconstruction
To check the accuracy of our reconstruction method

using the estimated depth map, we compared the results
reconstructed using the ground truth depth with the re-
sults reconstructed using estimated depth. We used a per-
centage of δ < 1.25, a depth estimation performance in-
dex, as a confidence score p to reconstruct from the esti-
mated depth map. The two reconstruction results are rep-
resented as a point cloud, called pcgt and pcest, respec-
tively. We used two evaluation criteria: the first is the pro-
portion of the pcest that have a matched point in pcgt, and
the second, conversely, is the proportion of the pcgt that
have a matched point in pcest. They are called Precision
and Recall, respectively. These two measurements pro-
vide an overview of how well our method reconstructed
the environment. In the experiments, we defined that the
two points are matched if the distance between them is
less than 0.8 m.

5. RESULT

5.1 Depth estimation
We compared our method with the mean depth image

computed in the training set, which is the lower bound
performance. The depth estimation results for our col-
lected data set are shown in Table 1. Our method showed
69.8% performance for δ < 1.25, which is about 10%
higher than the mean depth image. In addition, it showed
high performance as 91.4% for δ < 1.253, and high clas-
sification accuracy as 92.4%.

The depth image estimated by our method and the
ground truth depth image can be seen in Fig. 4. The es-
timation results of our method mainly estimate the depth
values of walls and floors well. However, the accuracy



Fig. 4. Results of depth estimation with compound eye images. From first to last row; Compound eye RGB images,
typical RGB images at the same position, ground truth compound eye depth images, estimated depth images using
our method. In the depth images, the yellow area is the area where the depth value exceeds dth.

Table 1. Comparison of depth estimation results on our
compound eye image dataset

δ <1.25 δ <1.252 δ <1.253 Classification
Accuracy

Ours 69.8% 84.2% 91.4% 92.4%
Mean 58.7% 80.2% 86.6% -

of other objects such as tables is relatively low. It can
be seen that the classification accuracy is high, and most
misclassification is made at the boundary where the depth
value is near dth.

5.2 3D reconstruction
We compared the results of our reconstruction method

using depth estimation pcest with reconstruction using
ground truth depth pcgt. We use the probability of δ <
1.25 of the depth estimation network (0.698) as p in Al-
gorithm 1. As provided in Table 2, our method shows
high Recall and high Precision, which means that pcest
contains most of pcgt, and also most of pcest correctly
reconstructed the scene. From this result, the task such
as collision avoidance can perform well using the recon-
struction results of our method.

The results of 3D reconstruction pcgt and pcest are

Table 2. Recall and Precision of our 3D reconstruction
method

Recall Precision
Ours↔ gt 97.51% 98.09%

shown in Fig. 5. In Fig. 5, (a) is the result of recon-
struction using ground truth depth without dth, and (b)
is the result of reconstruction using estimated depth map
with dth. Because we use the probability of δ < 1.25,
we visualize pcest using voxels instead of points. We use
voxels with edges of length 0.3 m in Fig. 5 (b). It can
be seen that the reconstruction result using the estimated
depth map is similar to pcgt even though a small voxel is
used.

6. CONCLUSION

We proposed a method for depth estimation using this
data and 3d reconstruction method with a compound eye
using an estimated depth map. We also implemented a
compound eye camera and collected data to evaluate the
methods in the simulation. Our proposed method is able
to reconstruct the simulation environment accurately, and



(a)

(b)

Fig. 5. (a) Result of reconstruction using ground truth
depth. (b) Voxel representation of reconstruction re-
sult with estimated depth map.

it is expected that our method can be used when per-
forming tasks such as collision avoidance. Above all, our
method is simple, so it is thought to be suitable for hard-
ware with low computing power. In addition, since we
have implemented an environment that can experiment in
the simulation, so if the compound eye camera is imple-
mented as hardware, it is expected that research such as
learning from simulation and transfer to the real environ-
ment will be possible.
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