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Abstract: Following a demonstration path without observing exact location of an agent is a challenging navigation
problem. Especially, considering the probabilistic transition function of the agent makes the problem hard to solve with
an exact action decision, so learning-based approaches have been used to solve this task. For example, a previous method
by Kumar and Gupta et al., robust path following network (RPF), is a neural-network-based method using visual memories
of the demonstration. Although the RPF shows good performances on the path-following task, it does not consider the
efficiency of the visual memory since it requires the entire visual memory of the demonstration. In this paper, we propose
a path-following network using sparse memory of the demonstration path that can deal with various sparsity of the visual
memory. For each time step, the proposed network makes soft attention on the sparse memory to control the agent.
We test the proposed model on the Habitat simulator using MatterPort3D dataset with various sparsity of memory. The
experimental results show that the proposed method achieves 81.9% of success rate and 73.7% of SPL on a model with
0.8 memory sparsity, and also the results of the models with other memory sparsity achieve reasonable performances
compare to the baseline methods.
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1. INTRODUCTION

Imagine a mobile service robot that is set in a new en-
vironment. The mission of the robot is covering a service
path based on a given demonstration path. If the robot
is not able to access its exact location, for example in
an indoor environment, it should follow the demonstra-
tion path by using only visual observations it gets. This
path-following task may seem easy because one can think
a naive solution: following the sequence of action of a
demonstration exactly. However, actuation noises make
it impossible for an agent to reproduce the exact same
path even if the agent performs the same actions.

One classical approach to solve this problem is build-
ing a 3D map near demonstration path by using SLAM
algorithm. While the approach localizes the agent and
predicts the best action based on the reconstructed map,
it is an overly resource-consuming method deriving the
precise map. Rather than the precise map, knowing se-
quential visual and action information of the demonstra-
tor might be more important and also enough information
for the path-following. For this reason, approaches using
deep neural networks are adopted to focus on the visual
and action information of a path.

There have been studied a number of learning-based
approaches which concentrate on solving navigation
problems [3–8, 10, 12, 13]. Most of these studies aim to
train their model to predict appropriate actions based on
the online visual observations which have been obtained
by the current agent. Among these current-agent-based
navigation algorithms, Kumar and Gupta et al. [5] pro-
posed a visual-memory-based path following algorithm,
robust path following network (RPF). The RPF aims to
control an agent to follow a demonstration path in a new
environment by using a visual memory, which is ob-
tained from a demonstrator, not the agent currently con-

trolling. Although the RPF achieved good performances
on the path-following task, it did not consider memory ef-
ficiency since it required the entire visual memories of the
demonstration path. Memory efficiency can be a prob-
lem, for example, embedded devices like mobile service
robots do not have enough memory budget to carry the
entire visual memories.

To address this issue, we propose a path-following
network using only sparse memory of the demonstra-
tion path. The proposed model consists of convolutional
neural networks (CNN) and recurrent neural networks
(RNN) which are trained by end-to-end learning. The
proposed method can deal with various sparsity of visual
memory without changing the model, and the experimen-
tal results show reasonable performance drop according
to the sparsity of the memory.

The contributions of the paper are summarized as fol-
lows:
• We propose a learning-based path-following model us-
ing only sparse visual memory.
• The path-following performance of the proposed
model tested in the simulation environments of indoor
scenes is satisfactory considering the sparsity of memory.

2. RELATED WORK
There have been many studies dealing with visual nav-

igation tasks using visual memory [3–5, 8, 12]. ‘Mem-
ory’ is defined differently in each paper suit for their goal.
[4] proposed a mapping model and a planning model for
point goal navigation. They built a spatial free space map
as a memory. [8] proposed to build a topological graph
map as a memory to help navigation tasks. [3] used atten-
tion by using transformer network. [11] on the previous
trajectory of the current agent as a memory. [12] built a
memory as a relational graph of indoor locations to use



as a prior knowledge for navigating indoor an environ-
ment. [5] used observations of a demonstration path as a
memory which is used to control an agent who wants to
follow the demonstration path. The problem setting of
the model proposed in [5], the RPF, is similar to this pa-
per, however [5] does not consider efficiency of the mem-
ory since it uses the entire observations of the demonstra-
tion path. Different from the above methods, we propose
a learning-based path-following navigation model which
also considers the efficiency of memory.

3. METHOD
3.1 Problem Setup

The goal of the proposed model is to follow a demon-
stration path p = {p1, . . . , pn} in an unseen environment
E by using only sparse memory of the demonstration.
The problem includes the information observed (obser-
vation) at each point in the path; in this paper, the obser-
vation on a point (ot) is same as a first-person-view RGB
image at the point. For each time step, the path-following
network makes soft attention on the sparse memory fea-
tures based on an attention point. The network then de-
rives the next action, ât, and the next attention point by
referring the attended sparse memory and a current obser-
vation, φ(ot), where φ is an RGB image encoding CNN.

3.2 Network Architecture
The proposed model is a controller of the agent to fol-

low the demonstration path. It uses the sparse memory of
the demonstration as follow:

SP (p) = {M,a,M∗}, (1)

where M = {m1, . . .ml} is a sparse visual memory set
among n-length path, M∗ is a list of indices of observa-
tions used in the memory, and a = {a1, . . . , an} repre-
sents the actions of the demonstrator. Note that we use
all demonstration actions including actions without cor-
responding visual memories to leverage information of
the relative location of each visual memory.

When the agent follows the path, an attention mecha-
nism is used over SP (p). At each time step t, an attention
pointer ηt is used to get softly attended M and hardly at-
tended a. The attended sparse memory µt is following
as,

µt = ψ(
∑
j

mje
−|ηt−M∗(j)|,aηt), j = 1, . . . , l (2)

where aηt = {abηtc−k, . . . , abηtc+k} is a subset of a
based on the hyperparameter k, and ψ is a trainable fully-
connected layer. The path following network π is realized
as a gated recurrent unit (GRU [2]) as follow:

ht+1, b, ât = π(ht, µt, φ(ot),aηt) (3)

ηt+1 = ηt + tanh(b) (4)

where ht is an internal state of the GRU, ot is the current
observation, and b is the increment of the attention pointer
η. The initial settings are h1 = 0 and η1 = 1. The
overview path following network is shown in the Figure
3.1.

3.3 Training
We apply an imitation learning to train the proposed

network. For collecting expert data, we sampled per-
turbed paths from demonstration paths. The imitation
learning loss Lil is a cross-entropy between the expert’s
action and the path-following agent’s action:

Lil =
∑
t

aex
t logât, (5)

where aex
t is the action of expert in step t.

4. EXPERIMENTS
4.1 Experimental Settings

In the experiments, we use Habitat simulator [9] based
on MatterPort3D dataset [1]. The simulation environ-
ment consists of indoor scenes of 90 different houses
which split as 61 for train, 11 for validation and 18 for
test. For demonstration paths, we collect optimal paths
from the point goal navigation dataset provided by [9]
which consists of initial point and goal point pairs and
the optimal paths between two points. Action space of the
agent is as follows: move forward for 0.3m, turn left or
right for 20◦. We also collect perturbed paths with actua-
tion noises, which follow the same initial point and goal
point with the corresponding demonstration path. These
data become the path-following data and be used to train
the proposed network by imitation learning. We sam-
ple an actuation noise from N (0, 0.52) (m) for forward
movement and N (0, 12) (radian) for rotation.

We crop the demonstration data by length of 30 steps
(n), and set a maximum length of the path-following data
by 50 steps. The size of the sparse visual memory, l, is
determined by multiplying n with a sparsity defined in 0
and 1. We choose a sparsity of the model before training,
and fix it during the training and testing time. The sparse
memories are sampled with even intervals to fit the goal
sparsity, whereM∗ = {bi× n

l−1c|i = 1, . . . , l−1}∪{1}.
In the experiments, we use success rate and success

weighted by normalized inverse path length (SPL) as
evaluation metrics. The success of an agent is defined
as reaching within 2 steps or 10% of the initial distance
to goal, whichever is larger.

4.2 Experimental Results
The experimental results of the path-following task in

the test environments is represented in Table 1. We test
the proposed network with sparse memory of sparsity 0.4,
0.6, and 0.8. For baseline models, we take RPF [5] which
uses entire visual memories for path-following and the
action-only-version of RPF which does not use visual
memory at all. Each model in the table is trained and
tested independently on the proposed dataset.

Table 1 shows that the performances of our models are
between the two baseline models which means that the
proposed model exploits the sparse visual memory effec-
tively. Note that the performance of RPF is the upper
bound of the proposed model since RPF uses entire visual
memories. In addition, the results show that performance



Fig. 1 Overview of the proposed model. The sparse memory,M , is evenly sampled from the path p. Based on the
attention pointer ηt which increase gradually during training, soft attended sparse visual memories and the hard attended
action list are fused by ψ. The fused feature µt, the hard attended action lists aηt , and the current observation φ(ot) are
input of the policy GRU π. π outputs the next action ât and attention increment b.

Table 1 Performance of the path-following task with various sparsity of visual memory which are tested on the test
environment of the Habitat simulator rendering the MP3D dataset

Sparsity 0.4 Sparsity 0.6 Sparsity 0.8 RPF only action [5] RPF [5]
Success SPL Success SPL Success SPL Success SPL Success SPL

SPF 0.782 0.683 0.803 0.724 0.819 0.737 0.782 0.648 0.833 0.752

increases when the memory size increase, which is in line
with the common intuition.

5. CONCLUSIONS
In this paper, we have presented a learning-based path

following navigation model using a sparse memory of
a demonstration. The proposed sparse-memory-based
model achieves memory efficiency with less drop of path-
following performance. The proposed model can be used
to agents with limited memory budget, such as mobile
robots.
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