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Abstract— The eye structure of insects, which is called a
compound eye, has interesting advantages. It has a large field
of view, low aberrations, compact size, short image processing
time, and an infinite depth of field. If we can design a compound
eye camera which mimics the compound eye structure of insects,
compound images with these interesting advantages can be
obtained. In this paper, we consider the design of a compound
camera prototype and low complexity semantic segmentation
scheme for compound images. The prototype has a hemisphere
shape and consists of several synchronized single-lens reflex
camera modules. Images captured from camera modules are
mapped to compound images using multi-view geometry to
emulate a compound eye. In this way, we can simulate various
configurations of compound eye structures, which is useful for
developing high-level applications. After that, a low complexity
semantic segmentation scheme for compound images based on
a convolutional neural network is proposed. The experimental
result shows that compound images are more suitable for
semantic segmentation than typical RGB images.

I. INTRODUCTION

Many inspirations of nature have been used to design new
technologies. Especially, bio-inspired structures are often
used as is to resolve challenging problems. The most popular
example is ”Shinkansen”, which is the fastest train in the
world made in Japan [1]. The combination of sudden air
flow changes and the high speed of the train makes thunder
clap when the train emerges from a tunnel, which is a key
problem for making high-speed transportations. It was solved
by designing the train mimicking the kingfisher’s head. King-
fishers can go through the air and hunt fishes in the water
without splash owing to its unique shape of head. The eye
structure of insects has many interesting features. The eye
of insects, which is called a compound eye, is a remarkably
sophisticated structure with a number of advantages. It has
a large field of view (FOV), low aberrations, compact size,
short image processing time, and an infinite depth of field
[2]–[5]. If we can design a compound camera mimicking the
structure of the compound eye, we can obtain images with
these interesting advantages.

In the meantime, it can be a key issue to make con-
ventional computer vision algorithms suitable for compound
images. Among the useful algorithms, we focus on semantic
segmentation, which is one of active research topics in
computer vision. Semantic segmentation is the problem that
not only segments an input image into several coherent
regions but also understands the class of each region. It has
many applications such as autonomous driving of vehicles
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and robot visions. On the one hand, semantic segmentation
for compound images might have higher value if it can
be applied to low-cost mobile robots. It is suitable for
reconnaissance robots whose main purpose is to obtain as
much information as possible. However, most of semantic
segmentation works do not consider the complexity of the
algorithm which can be one of the key issues for mobile
robots.

In this paper, we consider the design of a compound
camera prototype and a light-weight semantic segmentation
scheme for compound images. We emulate a compound
eye by incorporating several single-lens reflex cameras.
Single-lens camera modules are on the hemisphere shaped
frame, and they are synchronized to capture synchronized
large FOV images. Images captured by camera modules
are mapped to the compound eye structure using multi-
view geometry to generate compound images consists of
hundreds of single-eye images. In this way, we can simulate
various configurations of compound eye structures, which is
useful for developing high-level applications. We propose
a semantic segmentation algorithm for compound images
based on convolutional neural networks (CNNs). In design-
ing the proposed CNN network, we have also considered the
complexity of the algorithm, which is a key issue for mobile
robots. The number of parameters of the proposed CNN
network is much smaller than the conventional CNN net-
works such as FCN-VGG16 and FCN-GoogLeNet [6], and
it has a frame rate of 120fps on a GPU. In the experiments,
we show the advantage of compound images compared to
single images in the application of semantic segmentation.
Especially, the fact that neighboring eyes have some common
sight helps the semantic segmentation process. We have also
tested the proposed framework with various sizes of single
images, which can give an insight into the future design of
a compound eye image sensor.

The remainder of this paper is organized as follows.
In Section II, related work is introduced. The proposed
compound camera hardware prototype and the compound
mapping scheme are explained in Section III and in Section
IV, respectively. The proposed low complexity semantic
segmentation network is introduced in Section V. The ex-
perimental results are described in Section VI.

II. RELATED WORK

A. Compound Eye

There have been several studies that fabricate devices
that mimic the compound eye structure [7]–[9]. An almost
complete hemispherical form of arthropod-inspired camera
was introduced in [7]. They presented materials, mechanics



and schemes of integrating arthropod-inspired camera. In
[8], a compact compound-eye camera based on a freeform
microlens array was introduced. They fabricated on a flat
surface, resulting in a narrower field of view than a hemi-
sphere shape. [9] also developed an artificial compound eye
with a theoretical analysis. However, they only focused on
the manufacturing process of compound eye devices, and no
application was proposed.

On the other hand, some applications using compound
images have been introduced [10], [11]. [10] developed
high-resolution image reconstruction method from several
low-resolution images captured by a compound camera.
They rearranged pixels in all single-eye images in a virtual
image plane consisting of fine pixels. A 3D ego motion
estimation method was proposed in [11]. They showed that
the geometry of the compound eye is optimal for 3D ego
motion estimation, and a linear camera motion estimation
algorithm was proposed. However, they focused on low-level
applications that are difficult to use for general recognition
problems.

B. Semantic Segmentation

Semantic segmentation has been actively researched [6],
[12]–[16]. In the early-stage, conditional random field model
[17] was used to classify classes of each pixel [12], [13].
The input images were over-segmented into super-pixels, and
the super-pixels were merged using several scene-specific
conditional random fields models [12]. The features were
extracted with texture-layout filters and they were classified
with conditional random fields in [13].

The performance of many computer vision problems in-
cluding semantic segmentation has been improved based
on CNNs [6], [15], [16]. In the CNN framework, features
and classifiers are jointly optimized, resulting in improved
performance. Deconvolution network based on VGG net [18]
was proposed in [15]. They utilized the deconvolution and
unpooling scheme for semantic segmentation. However, the
input image size of the deconvolution network was fixed, and
this problem was solved in fully convolutional networks [6].
The concept of fully convolutional network can be easily
incorporated in other network structures, and applied to
ResNet [19] and VGG Net [18].

III. COMPOUND CAMERA PROTOTYPE

We have designed a compound camera prototype which
consists of six single-lens reflex cameras. The camera mod-
ules are on the hemisphere-shaped metal frame. Each camera
module can capture 1280× 960 size images at 24.6 fps.
The blueprint of the proposed device and the implemented
hardware are visualized in Figure 1.

We denote each camera module as C1,C2, · · · ,C6, and
denote the center of the hemisphere as O. These notations are
shown in Figure 1. The first camera module C1 is at the cen-
ter, and the other camera modules C2, · · · ,C6 are uniformly
deployed around C1. All camera modules are synchronized,
allowing to capture large FOV images. The captured images
from the prototype are manipulated to emulate a compound

Fig. 1. The blueprints of the proposed device are visualized in (a) top view,
(b) bottom view, and (c) side view. An image of the implemented hardware
is shown in (d). It consists of six single-lens reflex camera modules, and
they are synchronized.

eye. Specifically, images captured by camera modules are
mapped to the compound eye structure. To achieve this,
we propose a mapping scheme that transforms the images
captured from camera modules to compound image space
using homography. In this way, we can simulate various
configurations of compound eye structures easily compared
to fabricated compound eye hardwares. Also, this aspect can
be useful for developing high-level applications.

IV. COMPOUND IMAGE MAPPING

We introduce compound image mapping procedure in this
section. The core of the scheme is to transform an image
captured from a camera module to a single eye image. It is
assumed that single eyes are distributed on the hemisphere
surface and the captured object is far enough to consider a
single image as a plane. Here, the size of a single image
is S × S. Let us consider a spherical coordinate system
of which the origin, x-axis, and z-axis are O,

−−→
OC′5, and−−→

OC1, respectively, where C′5 is the projected point of C5
onto the floor surface of the prototype. Here, the view of
a camera is represented with a coordinate in the spherical
coordinate system as shown in Figure 2 (a). We consider
the transformation of an image at a = (r,θa,φa) to an image
at b = (r,θb,φb), where r is the radius of the hemisphere,
θ is the polar angle, and φ is the azimuthal angle. For this
procedure, the homography Hab between the images at a and
b is needed. For easy of computation, we calculate Hab by
a product of Hac and Hcb, where the view c is (r,0,0). Hac
can be obtained as [20]

Hac = Rac−
tacnT

d
, (1)



Fig. 2. A visualization of the compound eye’s spherical coordinates, and an example of the proposed compound mapping scheme. (a) Three views of
single eyes are visualized, (b) the images captured by the compound eye prototype, and (c) corresponding compound mapping results.

where n is the normal vector of the image plane at view c,
d is the distance between the camera and the image plane
at view c, tac is the translation vector from c to a, and Rac
is the rotation matrix by which a is rotated in relation to c.
Here, Rac can be obtained as follows:

Rac =

1 0 0
0 cos(θa) −sin(θa)
0 sin(θa) cos(θa)

 cos(φa) sin(φa) 0
−sin(φa) cos(φa) 0

0 0 1

 ,

(2)
and tac can be obtained as

tac = (rsin(θa)cos(φa),rsin(θa)sin(φa),rcos(θa)) . (3)

Similarly, Hbc can be obtained as

Hbc = Rbc−
tbcnT

d
. (4)

Finally, Hab can be obtained as

Hab = HacH−1
bc . (5)

A pixel pa on the image at view a is transformed to a
pixel pb on the image at view b with the following relation:

pb = KbHabK−1
a pa, (6)

where Ka and Kb are intrinsic camera parameter matrices,
and both pa and pb are in the homogeneous coordinates. For
a single eye, we assume that the intrinsic parameters are the
same as the ones of the camera module. Note here that only
valid pixels within the size of the single image are selected.
An example of the proposed compound mapping is shown
in Figure 2 (c).

V. SEMANTIC SEGMENTATION FOR COMPOUND IMAGES

In this section, the proposed semantic segmentation net-
work for compound images is introduced. To leverage the
conventional CNN scheme, it is convenient to transform
compound images into a shape which is suitable for convolu-
tion. To achieve this, we put some constraints on compound
image configuration. We consider a discrete level on the
hemisphere surface and each level has uniformly increasing

Fig. 4. (a) An example of the compound image configuration with the
constraints. This example shows the case of n = 3, (b) The single images
on the hemisphere surface are considered to be on a flat square surface,
(c) An illustration showing that each single image is vectorized to make it
suitable for CNN.

polar angle. The number of single eyes at the nth level is
(8n−8) except the first level. At the first level, there is only
one single eye. With these constraints, we can transform the
compound image into a tensor representation by vectorizing
each image of single eye. Note that in this transformation,
we can preserve the spatial neighboring relations of each
single eye. An example of this discrete level compound
image configuration and corresponding tensor representation
is shown in Figure 4.

After that, we can take advantage of the conventional CNN
scheme by using the tensor represented compound images.
We design the network with two aspects: (i) the number of
parameters is small, and (ii) the network structure is simple
for easy implementation for a mobile robot. The basic struc-
ture of the proposed network follows the fully convolutional
networks [6]. The proposed network structure is shown in
Figure 3. The network consists of four convolutional layers,
and a leaky ReLU activation layer is followed after each
convolutional layer. In all convolutional layers, 3x3 filters are
used. Note that in the last layer, no activation layer is applied,
but a pixel-wise softmax layer is applied. The output of the
network is pixel-wise confidence distribution which shows
how much the single image is classified to different classes.
The number of parameters of the proposed network (in the
case of S = 10) is 0.33 millions, which is much smaller than
the other networks (134 millions for FCN-VGG16, 6 millions



Fig. 3. A visualization of the proposed semantic segmentation network for compound images. It consists of four convolutional layers and a leaky ReLU
activation layer is followed after each convolutional layer except the last layer. The output of the last layer is fed to the softmax layer to predict classes
of each single image. In all convolutions, we use 3x3 size filters.

TABLE I
PERFORMANCE OF THE PROPOSED SCHEME WITH VARIOUS SIZES OF

SINGLE IMAGES

S (Pixel) 1 3 5 10 20 30

Mean IU 0.411 0.421 0.427 0.432 0.425 0.416

for FCN-GoogLeNet [6]).
We choose the mean squared error loss between the

network output and the ground truth. The network is trained
with RMSprop [21] with a learning rate of 0.0001. We use
the batch size of 256, and the network is trained for 200
epochs.

VI. EXPERIMENTAL RESULTS

A. Training Set

A data set of compound images is needed to train the
proposed network. However, to the best of our knowledge,
publicly available data set of compound images does not
exist. Furthermore, making a new data set incorporating
the proposed prototype needs pixel-wise class annotations,
which is a very harsh task. Hence, we simulated compound
images with a public semantic segmentation data set using
the mapping scheme introduced in Section IV. For this
procedure, we assumed that the image was captured from
the first camera C1, and input images and corresponding
segmentation maps were transformed to 21×21×(3×S×S)
size tensor, i.e., n = 11. We used the COCO-Stuff 10K data
set [22] for the data set generation. This data set is composed
of 10,000 complex images from COCO data set [23], and
each image has dense pixel-level class annotations. There
are total 182 classes of 91 thing classes and 91 stuff classes.
However, inferencing all detailed classes might have little
utility improvement compared to the increased complexity.
Therefore, we selected four classes that is suitable for mobile
robots, and they are things, ground, sky, structure and the
other classes were considered as background. 9,000 images
were used as the training data set, and the other images
were used as the test data set. For this procedure, we set
r = 110mm and d = 1500mm. We note that a single eye
image has more than one classes after the compound image
mapping. We chose the most frequent class as the ground
truth class of each single eye image.

Fig. 5. Visualizations of compound mapped images with various sizes of
single eye image.

B. Evaluation Metric

The performance was evaluated with mean intersection
over union (IU) metric following the practice in [6]. The
mean IU metric is defined in each test sample, and the final
measure is the average among all test samples. Let ki j be the
number of pixels whose ground-truth class is i and classified
as class j. Then, the mean IU metric of a sample is defined
as

1
K ∑

i

kii

∑ j ki j +∑ j k ji− kii
, (7)

where K is the total number of classes.

C. Quantitative Evaluation

We evaluated the proposed network with various single
eye image sizes. In each case, the network structure is the
same except the channel depth of the first layer which is
3× S× S. The comparison result is shown in Table I, and
some visualized results are shown in Figure 6. We can see
that the best performance was achieved when the size of
the single eye image is 10× 10. To analyze the result, we
visualized the compound mapped images with various sizes
of the single eye image, which is shown in Figure 5. When
the single eye size is too small (S = 1), the compound images
cannot capture enough information compared to the cases of
larger single eye sizes. On the other hand, when the single
eye size is too large (S = 30), there are too many common
pixels, which make it difficult to define clear semantic class.
In case of a moderate single image size (S = 10), the



Fig. 6. Some examples of the semantic segmentation results. (a), (d) : compound mapped images, (b), (e) : ground truth semantic labels, (c), (f) : test
results of the proposed network. Here, different colors mean different classes.

common pixel information can help to determine neighboring
semantic classes. To verify this merit of compound images
compared to typical RGB images, we applied the proposed
network to RGB images. For the fair comparison, we roughly
cropped the RGB images to have the same visible regions
compared to the compound images. After that, the cropped
images were resized to the size of 210× 210, which make
an RGB image to have the same number of pixels compared
to a compound image at S = 10, and every non-overlapping
10×10 patches were vectorized to make it suitable for the
proposed network. The mean IU for this case was 0.364
which is much worse than the compound image cases.

Interestingly, the performance for the case of RGB images
was worse than the case of S= 1 which has no common pixel
information as RGB images. However, with the pixel-wise
accuracy measure, the case of RGB images showed slightly

better performance (61.7%) than the case of S = 1 (61.0%).
This difference was came the increased false positive in the
case of RGB images. The compound mapped images had a
tendency to have fewer false positive.

D. Qualitative evaluation

We qualitatively evaluated the proposed network on the
real images captured from the proposed prototype. We sim-
ulated images captured in outdoor to make the compound
images of n = 25. Note that all images taken from C1, · · · ,C6
were used and the size of a single eye image was set to
S = 10. For the test, we used the network trained on the
COCO-Stuff 10K training set. Some results are visualized in
Figure 7. From these figures, we can see that the proposed
network can find out rough class of each single eye although
it was tested on the images which are taken under different



Fig. 7. Some examples of the semantic segmentation results on the real
images. (a) compound mapped images, (b) inferred classes of each single
image. Here, different colors mean different classes.

conditions compared to the COCO-Stuff 10K data set.

E. Computation time

We measured the computation time for inferencing 1,000
test images. It took 8.2 seconds on a 12 GB NVIDIA
TitanX GPU. It is about 120 fps, and is suitable for real-
time applications. We can expect that a low-cost customized
hardware can be developed to process necessary processing
of the proposed scheme to be applied to low-cost mobile
robots.

VII. CONCLUSIONS

In this work, we have considered the design of a compound
camera prototype and a light-weight semantic segmentation
scheme which is suitable for mobile robots. The experimental
results have shown that compound images have merits for
the semantic segmentation application compared to typical
RGB images. We have also tested the proposed scheme with
various sizes of a single eye image. The best performance
have been achieved when the size of a single eye image is
10×10. In this configuration, the nth discrete level has the
polar angle of (3n−3)◦, and each single eye has a uniformly
increasing azimuthal angle whose interval is 360/(8n−8)◦.
In addition, each single eye image has approximately 53% of
overlapping region. This experimental result can provide a
guideline for the future design of a compound eye image
sensor. Designing a flexible convolutional neural network
structure that can process the general image structure, such
as compound images, is an interesting research topic, which
is left as future work.
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